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Outline
What is systems identification ?

Conventional systems identification methods - not our focus (see 2.3 Linear Methods)

Advanced systems identification methods - our main focus
Prediction Error Methods for input-output systems
Iterative Least-Squares
Other Classical NL methods
Nonlinear Models
An industry example: valve stiction
Subspace Identification Methods

Complementaries: Input design, data collection, model performance - very quickly

Identification software packages - to do some practice
The Literature & our SIPPY
Exercises: solved and proposed

Conclusions
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Objectives and main ingredients of systems identification

Objectives
Systems identification is concerned with the determination of a dynamic model of
the considered process given experimental (input and output) data

Three fundamental ingredients
1. Data set: Input (manipulated MVs or disturbance DVs variables) and output (CVs)

can be collected during specific identification campaigns or during normal plant
operation

2. Model set: A family of candidate dynamic models among which the optimal model
will be selected

3. Identification algorithm: A numerical method to calculate the model parameters
and obtain the optimal model
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The typical procedure
The system identification loop (Ljung, 1999)

Input 
design

Data 
collection

Prior knowledge

Model set

Fit criterion

Parameters identification

Model
Validation

Good model

Bad model
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Some preliminary definitions
The reference model (in discrete-time)

G(z)
ykuk

vk

Disturbance model
▶ By definition, the disturbance sequence {v} is not predictable a priori
▶ Often we assume that:

vk = H(z)ek

in which:
▶ H(z) is a stable Transfer Function (TF)
▶ ek is zero mean, white noise with variance λ: λ = E (e2

k )

The basic relation
yk = G(z)uk + H(z)ek

we want to determine two TFs: G(z) and H(z) given measured sequences {u} and {y}
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Some useful definitions and results
Probability quantities
▶ Expected Value of a random variable v :

E (vk) = E (H(z)ek) =

∞∑
j=0

hjE(ek−j) = 0

in which H(z) =
∑∞

j=0 hjz−j

▶ Auto-correlation of v :

Rv (τ) = E (vkvk−τ ) = E

( ∞∑
j=0

hjz−jek

∞∑
j=0

hjz−jek−τ

)

= E

( ∞∑
j=τ

hjhj−τ z−je2
k

)
=

∞∑
j=τ

hjhj−τE(ek−j) = λ

∞∑
j=τ

hjhj−τ

▶ When the autocorrelation function does not depend on k, the signal v is said to be
stationary
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Input/output models: Linear vs. Nonlinear methods
Model structures, black-boxes and possible identification methods

Model structure
Polynomials in z

Id. Method
G(z) H(z)

FIR B(z) 1 Linear (e.g. LLS);
but also NLARX A−1 (z)B(z) A−1 (z)

ARMAX A−1 (z)B(z) A−1 (z)C(z)

Nonlinear -
Advanced
(e.g. PEM,
ILLS, RLLS)

ARMA 1 A−1 (z)C(z)

ARARX A−1 (z)B(z) A−1 (z)D−1 (z)

ARARMAX A−1 (z)B(z) A−1 (z)D−1 (z)C(z)

OE F−1 (z)B(z) 1

BJ (Box-Jenkins) F−1 (z)B(z) D−1 (z)C(z)

GEN (Generalized) A−1 (z)F−1 (z)B(z) A−1 (z)D−1 (z)C(z)
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Advanced (Prediction Error) Methods: preliminaries
Motivation
▶ Linear methods and ARX/FIR models can be too simplistic, in terms of noise

description
▶ Advanced model: increase flexibility by describing equation error H(z) with a

proper dynamics of the white noise ek

Features (of PEMs)
▶ Given the output model ŷk , define the prediction error ϵk = yk − ŷk

▶ Often the prediction error is filtered: ϵF
k = L(z)ϵk , where L(z) is a suitable TF which

acts as a frequency filter
▶ Given data for N sampling times, the loss function is:

VN =
1
N

N∑
k=1

L(ϵF
k )

where L(·) is a non-negative scalar function
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Prediction Error Methods: details
The optimization problem
▶ Chosen the model structure, the predictor has the form: ŷk = φT

k (θ)θ

▶ The coefficient vector (θ) has a nonlinear effect in the regressor vector φk so that
linearity is lost

▶ PEM solve an optimization problem:

θ̂N = argmin
θ∈D

VN

▶ Depending on the choice of function L(·) and of the model structure, the above
problem can be a simple Quadratic Program (QP) or a more involved NLP

▶ For specific classes of model, ad hoc optimization algorithms were developed
▶ Note that these NL problems maybe very large for MIMO systems with evident

computational issues
▶ Anyway, identification of input-output systems is always MISO
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Prediction Error Methods: Model Validation
Predictors
▶ Given the general model: yk = G(z)uk + H(z)ek

▶ the prediction error: ek := ϵk = yk − ŷk

we can define:

1-step-ahead predictor
yk = G(z)uk + H(z)(yk − ŷk) ⇒ H−1 (z)ŷk = G(z)uk + (H(z)− 1)yk

ŷk = H−1 (z)G(z)uk + (1 − H−1 (z))yk

k-step-ahead predictor
ŷk = Wk(z)G(z)uk + (1 − Wk(z))yk

where:
Wk(z) = H̄k(z)H−1 (z); H̄k(z) =

k−1∑
j=0

hjz−j

being {hj} the coefficients of the finite impulse response of TF H(z)
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ARMAX model
AutoRegressive Moving Average with eXternal inputs model
▶ The difference equation is:

yk + a1 yk−1 + · · ·+ ana yk−na = b1 uk−ℓ−1 + · · ·+ bnb uk−ℓ−nb+

ek + c1 ek−1 + · · ·+ cnc ek−nc

▶ noise model: the error ek has its own dynamics (as moving average)
▶ Polynomial form:

A(z)yk = B(z)uk + C(z)ek

with: C(z) = 1 + c1 z−1 + c2 z−2 + · · ·+ cnc z−nc

▶ Observation: in this model G(z) and H(z) have same poles, given that:

G(z) = A−1 (z)B(z), H(z) = A−1 (z)C(z)

▶ ARMAX can be identified via various nonlinear methods, PEMs (see later...)
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Other “Advanced” input/output models

Equation-Error-Type
Different error models:
▶ “ARMA” model: A(z)yk = C(z)ek

i.e. G(z) = 1 , H(z) = A−1 (z)C(z)
Moving Average, but no eXternal part

▶ “ARARX” model: A(z)yk = B(z)uk + D(z)−1 ek

i.e. G(z) = A−1 (z)B(z), H(z) = A−1 (z)D−1 (z)
a specific AutoRegressive

▶ “ARARMAX” model: A(z)yk = B(z)uk + D(z)−1 C(z)ek

i.e. G(z) = A−1 (z)B(z), H(z) = A−1 (z)D−1 (z)C(z)
a specific ARMAX structure

12/47



Other “Advanced” input/output models
Output-Error-Type
When G(z) and H(z) are parametrized independently,
no AutoRegressive part (A(z)) is used:
▶ “Output-Error” (OE) model:

yk = F−1 (z)B(z)uk + ek

i.e. G(z) = F−1 (z)B(z), H(z) = 1
▶ “Box-Jenkins” (BJ) model:

yk = F−1 (z)B(z)uk + D−1 (z)C(z)ek

i.e. G(z) = F−1 (z)B(z), H(z) = D−1 (z)C(z)
G(z) and H(z) have different poles

General model:
A(z)yk = F−1 (z)B(z)uk + D−1 (z)C(z)ek

i.e. G(z) = A−1 (z)F−1 (z)B(z), H(z) = A−1 (z)D−1 (z)C(z)
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Iterative Least-Squares for ARMAX
Preliminaries (SISO case)
▶ The parameter vector is: θ = [a1 a2 ... ana b1 ... bnb c1 ... cnc ]

T ,
where the orders na,nb,nc are defined by the user, as for the time-delay ℓ

▶ The predictor is of the form: ŷk(θ) =
B(z)
C(z)uk +

[
1 − A(z)

C(z)

]
yk

▶ which can be rewritten as: ŷk(θ) = B(z)uk + [1 − A(z)]yk + [C(z)− 1 ][yk − ŷk(θ)]

▶ Being the predictor error: ϵk = yk − ŷk

▶ the regressor vector is: φk = [−yk−1 . . . − yk−na uk−1−ℓ . . . uk−nb−ℓ ϵk−1 . . . ϵk−nc ]
T

▶ Hence, the predictor becomes: ŷk = φT
k (θ)θ

▶ which is not a linear regression: the terms ϵk can be computed only once θ is known,
i.e., φk depends on θ. Note: we call this pseudo-linear regression

▶ An iterative procedure is built to get the ”best” parameters
▶ Easy extension to MIMO ARMAX by using a MISO approach
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Iterative Least-Squares for ARMAX

The procedure (1/2)
▶ The whole output vector y is: [yM yM+1 . . . yN ]

with M = max(na, nb + ℓ, nc)

▶ Regressor matrix is obtained by stacking terms for k = M, . . . ,N:
ϕ = [φM φM+1 . . . φN ]

T

▶ To compute parameter vector θ, ϵ sequence must be already known
▶ Start with an ARX identification and compute the first prediction error: ϵ = y − ϕθ

▶ Use ϵ sequence to update matrix ϕ and get a new θ by using standard LLS
▶ Go on updating the error sequence and matrix ϕ, so that, Iterative LLS is built
▶ At each step, a norm is computed; e.g.:

VN(θ) =
1

2(N − M + 1)
∑

k
ϵ2

k
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Iterative Least-Squares for ARMAX
The procedure (2/2)
▶ If VN(θnew ) < VN(θold), then θnew is taken to update matrix ϕ

▶ Otherwise a re-evaluation of θ is performed (line search method):
θ∗ = λsθnew + (1 − λs)θold

where λs =
1
2 s , being s = 1 , 2 , 3 , · · · the s-th step of re-evaluation

▶ At each step of re-evaluation:
▶ norm VN is calculated
▶ if VN(θ

∗) < VN(θold), then θ∗ is taken as the next parameter vector
▶ otherwise s is updated and a new re-evaluation is performed
▶ when 1

2 s becomes less than eps(∗) (the smallest representable positive number such that
1 .0 + eps ̸= 1 .0 ), procedure is stopped and θold is taken

Finally, the procedure is stopped when:
1. the method finds a minimum of VN(θ);
2. the maximum number of iterations, user defined, is reached

(∗): eps = 10−7 in Python 2.7, using 32 bit NumPy
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Iterative Least-Squares for ARMAX
The scheme
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NL Methods

Other Classical NL methods
▶ Recursive Least-Squares

▶ Classical Linear Least-Squares can be recursive
▶ a time-variant estimator allows a uniform variation of the model parameters along the

identification horizon
▶ A Gain Estimator, a Covariance matrix and a Forgetting Factor are required
▶ Details are here omitted, but an example MATLAB code for ARMAX is provided

▶ Nonlinear Optimization
▶ Advanced Input-Output models (e.g., BJ) may benefit from NLP
▶ NL models require NL Programming
▶ Also mixed methods are possible: e.g. grid search + LLS/PEM
▶ See a later example
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Nonlinear Models - EARMAX (Karra and Karim, 2009)
Extended AutoRegressive Moving Average model
▶ An extended ARMAX structure:

yk = B(z)
A(z)uk + C(z)

A(z) ek + 1
A(z)ηk

▶ not only the noise term ek (stochastic disturbance with zero mean)
▶ but also a deterministic input disturbance ηk which is a time variant bias term

representing any external non-stationary disturbances
▶ The model to identify is: ŷk = φT

k (θ)θ + η̂k

▶ {η̂} is therefore intended as a parameter which varies slowly over time
▶ Identification method must be recursive
▶ Necessary condition: build an estimator that allows a non-uniform variation of the

model parameters, separating LTI part from time variant disturbance
▶ Parameter update with different forgetting factors between the two components
▶ An example MATLAB code is provided
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Optimization Problem to Identify NL Models

Very useful implementation tools

▶ Python
Amply validated, fast, easy-to-use, open-source,
customizable

▶ CasADi
Open-source symbolic calculation through
algorithmic differentiation, numeric optimization
oriented

▶ IPOPT
Standard in the class of open-source nonlinear
programming (NLP) solvers
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Nonlinear Block Models
In Discrete-Time

2 Blocks Models
Hammerstein

static nonlinear block followed by
dynamic linear block (TF)

Wiener

linear block (TF) followed by static
nonlinear block

3 Blocks Models
Hammerstein - Wiener Wiener - Hammerstein
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An example of NL block model: control loop with valve stiction

Extended Hammerstein SISO system
Control valve followed by the process dynamics:

▶ χ: valve stiction output, that is, process input
▶ y : process output
▶ u: output of a generic controller (PID or MPC)
▶ v : white Gaussian output noise

Whole plant dynamics
▶ nonlinear dynamics for the sticky valve, φ(·), here also NON static
▶ linear block for the process, SS form (A, B, C)

zk+1 =

[
χk
ξk+1

]
=

[
φ(χk−1 , uk)

Aξk + Bφ(χk−1 , uk)

]
yk = Cξk + vk

χ: 1st component of the state vector
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NL Valve Model
Smoothing function φS(·) ≃ φ(·) - (Bacci di Capaci et al., 2017)

χk = η1 (ek)χk−1 + (1 − η1 (ek))uk + η2 (ek)fD
where

η1 (ek) =
1
2 tanh(τ(ek + fS)) +

1
2 tanh(τ(−ek + fS))

η2 (ek) =
1
2 tanh(−τ(ek + fS)) +

1
2 tanh(τ(−ek + fS))

▶ being ek = uk − χk−1 ∼ valve position error
▶ Tuning parameter τ : ≃ 10 4 ⇒ φS(·) ≃ φ(·) higher value, sharper functions
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Identification Problem (1/3)
Defining the Hammerstein model
Linear Process: ARX structure in discrete-time form

A(z)yk = B(z)χk−ℓ + ek

▶ A(z),B(z): polynomials in backward shift operator z−1 (i.e. χk = z−1 χk+1 )

A(z) = 1 + a1 z−1 + a2 z−2 + . . .+ ana z−na

B(z) = b1 z−1−ℓ + b2 z−2−ℓ + . . .+ bnb z−nb−ℓ

▶ ℓ: input time-delay
▶ (na, nb): orders on the auto-regressive and exogenous terms

Non Linear Valve: the aforesaid smoothed stiction model φS(·)

Optimization variables X
▶ static and dynamic friction parameters (f̂S ,f̂D)
▶ na + nb coefficients of ARX process model

X = [f̂S , f̂D , θ̂] with θ̂ = [a1 , . . . , ana , b1 , . . . , bnb ]
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Identification Problem (2/3)

One-stage nonlinear optimization problem

X∗ = arg min
fS ,fD ,θ

SE(y , ŷ)

subject to:
fmin ≤ fS , fD ≤ fmax

fS ≥ fD
σ2 (χ̂) ≥ σ2

min

where
▶ ŷ = Φθ: identified process output
▶ Φ ∈ RN×na+nb : regressor matrix of the

measurements (u,y )
▶ N: number of data points
▶ χ̂: identified valve position

Remarks
▶ Square Error (SE) objective function: SE(y , ŷ) = 1

2 (y − ŷ)T (y − ŷ)
▶ Constraint on the variance σ2 (χ̂): valve is forced to oscillate due to the presence

of stiction, e.g. a safe choice σ2
min = 0 .1σ2 (u)

▶ Time-delay ℓ and model orders are assumed as parameters
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Identification Problem (3/3)
Initialization
Suitable initial point X0 :
▶ θ̂0 : ARX model identification, valve stiction free

θ̂0 = (ϕ0 )
+y = [ϕT

0 ϕ0 ]
−1ϕT

0 y
ϕ0 : initial regressor matrix computed by stacking linear regressor vectors φ0 ,k ∀ time
sample k

φ0 ,k = [−yk−1 , ...,−yk−na , uk−1−td , ..., uk−nb−ℓ]
▶ f̂S,0 , f̂D,0 : define a triangular shape domain

▶ fmax ≥ fS ≥ fD ≥ fmin = 0
▶ fmax = ∆u, oscillation span of controller output
▶ fS + fD = ∆u, square-shaped signal

Multiple starts (M) to avoid to be stuck in a local minimum
Start from the domain boundaries, step ∆fS = ∆fD = 0 .5
Choose the best solution in terms of objective function and infeasibility
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Subspace Identification Methods (SIM): introduction
Motivations
▶ Multivariable input-output systems identification requires prior knowledge or

trial-and-error to determine the system orders (note: Information Criteria can be
used; see complements...)

▶ Input-output systems identification is always MISO, whereas in some cases it would
desirable to directly identify MIMO models

▶ Identification of advanced multivariable models (e.g., ARMAX, OE, etc.) may
require solution of large nonconvex nonlinear programming problems

Features
▶ Direct identification of a DLTI state-space model
▶ Applicable to both MIMO and MISO approaches
▶ Compact multivariable state-space representation
▶ Very little prior knowledge required (an upper bound to the order)
▶ Based on reliable linear algebra decompositions
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State-space systems: basic definitions

DLTI system: process form

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk

▶ dimensions: x ∈ Rn, u ∈ Rm, y ∈ Rp

▶ note: n often unknown; m, p known; usually D = 0 , for physical systems
▶ noise term: split into measurement vk and process wk noise
▶ Assumption: {w}, {v} are sequences of independent random variables with zero

mean and covariances:
E(wkwT

k ) = Q E(wkvT
k ) = S E(vkvT

k ) = R
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State-space systems: basic definitions
DLTI system: innovation and predictor forms
Innovation form:

xk+1 = Axk + Buk + Kek

yk = Cxk + ek

Predictor form (AK = A − KC ):
xk+1 = AK xk + Buk + Kyk

yk = Cxk + ek

where K is the steady-state Kalman filter gain, obtained from Algebraic Riccati Equation

Main assumptions
▶ (A,B) controllable; (A,C) observable; AK = A − KC strictly Schur (|λi(Ak)| < 1 , ∀ i)
▶ The innovation {ek} is a stationary, zero mean, white noise process:

E(eje⊤
j ) = Re , E(eie⊤

j ) = 0 for i ̸= j
▶ Input {uk} and output {yk} data sequences are available for k = 0 , . . . ,N

Indirect routes to get this LTI model
▶ They can be obtained via realization of input-output models (TF ⇒ SS)
▶ Often the obtained order is quite high, with no perceivable advantages
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SIM: classification (Qin, 2006)
Traditional - N4SID, MOESP, CVA
▶ later grouped into a unifying theorem (Overschee and Moor, 1995)
▶ estimate system matrices (A,B,C , (D)) from the process form
▶ seen as a singular value decomposition (SVD) of a suitable weighted matrix
▶ basic assumption: uk and wk , vk are uncorrelated ⇒ may fail on closed-loop data
▶ do not enforce any block-triangular matrix and then casual models

Parsimoniuos - PARSIM-S, PARSIM-P, PARSIM-K, PARSIM-E
▶ estimate system matrices (A,B,C , (D),K ) from the innovation/predictor form
▶ remove non-causal terms in the linear projections by enforcing causal models; in

particular, enforce the lower triangular structure of matrix Hu
r

▶ sequential PARSIM-S (Qin et al., 2005) and parallel PARSIM-P (Qin and Ljung, 2003)
• oldest and most common algorithms
• basic assumption: uk and ek are uncorrelated ⇒ still may fail on CL data

▶ PARSIM-K (Pannocchia and Calosi, 2010) and PARSIM-E algorithms (Hou et al., 2015):
• specifically consistent with CL data
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Basic SIM: algorithm derivation
An r -step prediction model
▶ For each k, define an r -step prediction model (here, innovation form):

yk = Cxk + ek ; yk+1 = Cxk+1 + ek+1 = CAxk + CBuk + CKek + ek+1 ; yk+2 = . . .
ykyk+1

yk+2

...
yk+r−1


︸ ︷︷ ︸

ȳk

=


C

CA
CA2

...
CAr−1


︸ ︷︷ ︸

Γr

xk +


0 ··· ··· 0

CB 0 ··· 0
CAB CB ··· 0
...

...
. . .

...
CAr−2 B CAr−3 B ··· 0


︸ ︷︷ ︸

Hu
r


ukuk+1

uk+2

...
uk+r−1


︸ ︷︷ ︸

ūk

+


I ··· ··· 0

CK I ··· 0
CAK CK ··· 0
...

...
. . .

...
CAr−2 K CAr−3 K ··· I


︸ ︷︷ ︸

He
r


ekek+1

ek+2

...
ek+r−1


︸ ︷︷ ︸

ēk

▶ Repeat for k ∈ {r , . . . ,M = N − r + 1} and concatenate horizontally:
[ ȳr ··· ȳM ]︸ ︷︷ ︸

Y

= Γr [ xr ··· xM ]︸ ︷︷ ︸
x

+Hu
r [ ūr ··· ūM ]︸ ︷︷ ︸

U

+He
r [ ēr ··· ēM ]︸ ︷︷ ︸

E
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Basic SIM: algorithm - extended observability matrix
The basic relation
▶ The previous relation is written compactly as:

Y = Γr x + Hu
r U + He

r E
▶ Γr is called extended observability matrix
▶ Hu

r and He
r are lower triangular block Toeplitz matrices

Computing the extended observability matrix
▶ Note: the different methods basically separate here.

E.g., in PARSIM-K, express:
x = [ xr ··· xM ] = Ar

K [ x0 ··· xM−r ] + [ Ar−1
K B ···B ]Up + [ Ar−1

K K ···K ]Yp

≊ [ Ar−1
K B ···B Ar−1

K K ···K ]︸ ︷︷ ︸
Lz

[
Up
Yp

]
︸ ︷︷ ︸

Zp

▶ Solve the basic relation: Y = Γr LzZp + Hu
r U + He

r E to obtain (Γr Lz) from LS
▶ Compute Γr , having n columns with n < r , from a truncated SVD of (Γr Lz)
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Basic SIM: algorithm - compute (A,C)

Computing (A,C): another LS problem
▶ After Γr is obtained, we can easily compute C (MATLAB notation):

C = Γr (1 : p, :)

that is, first p rows of Γr , being p the output number
▶ The matrix A is instead obtained from the LS problem, by using shift-invariance

property of Γr :
Γr (p + 1 : p × r , :) = Γr (1 : p × (r − 1), :)A

▶ Hence, the solution is:

A = Γr (1 : p × (r − 1), :)+Γr (p + 1 : p × r , :)

where {·}+ is the pseudo-inverse matrix; Γr (1 : p × (r − 1), :) and Γr (p + 1 : p × r , :)
are Γr without the last and the first p rows, respectively
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Basic SIM: algorithm - compute B, (D), and x0

Obtaining B and x0 via LS
▶ From: xk+1 = Axk + Buk + x0 ; ŷk = Cxk

▶ Being xk+1 = zxk , obtain: xk = (zI − A)−1 (Buk + x0 )

▶ With (A,C) known, we can write a linear predictor:

ŷk = C(zI − A)−1 Buk + C(zI − A)−1 x0 = φkθ, with θ =

[
Vec(B)

x0

]
where Vec(B) is vectorized B matrix along the rows (easy extension when D ̸= 0 )

▶ repeating until N and stacking: Y = ϕθ

where

Y =

y1
...

yN

 , ϕ =

φ1
...

φN


▶ Solve an LS problem: θ = (ϕ⊤ϕ)−1ϕ⊤Y
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Identification software packages
Commercial packages
Many solutions from commercial vendors, covering the various identification methods
▶ System Identification Toolbox ™ in MATLAB (MathWorks, 2021):

the most famous and consolidated package
▶ Other options:

▶ ISIAC software (Tona and Bader, 2006)
▶ NI LabVIEW System Identification Toolkit (Instruments, 2021)

Open-source packages
Many examples, written on different programming languages,
as the various MATLAB-based toolboxes:

▶ UNIT (Ninness et al., 2013)
▶ CONTSID (Garnier et al., 2012)
▶ CAPTAIN (Young and Taylor, 2012)
▶ ITSIE (Guzmán et al., 2012)
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SIPPY: System Identification Package for PYthon
Main features
One of most complete open-source package for Python – to the best of our knowledge ...
▶ covering a wide range of identification methods
▶ possibility to identify multivariable systems
▶ focused only on linear models
▶ excluded nonlinear systems

– see other software, e.g. NL-ARX (MathWorks, 2021) or
Hammerstein-Wiener models (Ninness et al., 2013)

Models & Data
▶ identifies both input-output and state space models
▶ uses input-output data (Open and Closed Loop)

for a general multivariable system with m inputs and p outputs:

u = [u0 u1 u2 . . . uN−1 ], y = [y0 y1 y2 . . . yN−1 ]

where N: number of samples
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SIPPY: some details on state space models
Algorithms implemented
▶ modified N4SID: improved “combined algorithm 2” (Overschee and Moor, 1996)

▶ original aspect of SIPPY: include 3 Parsimonious methods
▶ truncated SVD:

▶ retaining up to the n−th singular value
▶ alternatively, specify a threshold value TV with the maximum order allowed
▶ otherwise, employ an information criteria

▶ Extensive simulation studies:
⇒ superior performance in terms of the variance of the residuals

▶ lower computation load as only a single state sequence is identified

User specifications and choices
▶ model orders and horizons (future and past)
▶ direct input-output relation, i.e., matrix D ̸= 0
▶ matrix A is analyzed with a stability test

for traditional methods, impose the stability of matrix A: ρ(A) ≡ maxi(|λi |) < 1
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Summary about SIPPY
▶ An open-source package for Python with various sys id structures and methods
▶ Input-output models in 9 structures and 3 algorithms (∗):

▶ FIR, ARX ⇒ LLS
▶ ARMAX ⇒ I-LLS
▶ ARMAX, ARARX, ARARMAX, OE, BJ, GENERALIZED ⇒ NLP (∗: next release)

▶ State space models, 6 algorithms:
▶ 3 standard approaches (N4SID, MOESP, and CVA)
▶ 3 parsimonious (PARSIM-S, PARSIM-P, PARSIM-K)

▶ 3 information criteria: to help the choice of suitable model orders when not known a-priori
▶ Several file examples included: pure numerical and simulation
▶ The state-of-art MATLAB toolbox: taken as reference to test performance and accuracy
▶ Comparable results vs. MATLAB: but higher efficiency in terms of computational times

▶ Underlying code:
▶ default settings: intended to be simple for beginners
▶ user options: to set algorithms parameters
▶ repository: freely available at GITHUB
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The GitHub Repository

Open-source access: https://github.com/CPCLAB-UNIPI/SIPPY
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Simulation Examples – solved #1
The plant: a MIMO ARMAX system (m = 4 , p = 3 )

Output 1 Output 2 Output 3

Input 1 g11 = 4z3+3 .3z2

z5−0 .3z4−0 .25z3−0 .021z2 g21 = −85z2−57 .5z−27 .7
z4−0 .4z3 g31 = 0 .2z3

z4−0 .1z3−0 .3z2

Input 2 g12 = 10z2

z5−0 .3z4−0 .25z3−0 .021z2 g22 = 71z+12 .3
z4−0 .4z3 g32 = 0 .821z2+0 .432z

z4−0 .1z3−0 .3z2

Input 3 g13 = 7z2+5 .5z+2 .2
z5−0 .3z4−0 .25z3−0 .021z2 g23 = −0 .1z3

z4−0 .4z3 g33 = 0 .1z3

z4−0 .1z3−0 .3z2

Input 4 g14 = −0 .9z3−0 .11z2

z5−0 .3z4−0 .25z3−0 .021z2 g24 = 0 .994z3

z4−0 .4z3 g34 = 0 .891z+0 .223
z4−0 .1z3−0 .3z2

Error model h1 = z5+0 .85z4+0 .32z3

z5−0 .3z4−0 .25z3−0 .021z2 h2 = z4

z4−0 .4z3 h3 = z4+0 .7z3+0 .485z2+0 .22z
z4−0 .1z3−0 .3z2

orders: p for output and error, p × m for inputs and time-delays:

na = [3 1 2 ], nb =

2 1 3 2
3 2 1 1
1 2 1 2

, nc = [2 0 3 ], Θ =

1 2 2 1
1 2 0 0
0 1 0 2


Parameters & Settings

▶ Input Data: 4 independent GBN with a switch probability equal to 3%
▶ Models tested: ARX and ARMAX, with known system orders and time-delays
▶ White noise e(i): 5 levels with different variances σ2

▶ Monte Carlo simulations: ∀ noise level, a set of simulations with N = 400 data
500 simulations for the identification stage and 500 for the validation
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Simulation Examples – solved #1
Identification performance index
Performance evaluated by using the explained variance (EV):

EV (i) = 1 −
∑

k(ϵ̂
(i)
k )2∑

k(y
(i)
k − y (i))2

where y (i) is the mean value of the i-th output
When a model returns EV (i) < 0 for an output, the EV is considered equal to zero

Results & Discussion

Average explained variance EV ,
for identification ID and validation VA data sets

σ2
1 σ2

2 σ2
3 σ2

4 σ2
5

ARMAX (ID) 0 .9423 0 .9585 0 .9513 0 .9386 0 .9293
ARX (ID) 0 .9955 0 .9918 0 .9858 0 .9769 0 .9672
ARMAX (VA) 0 .9417 0 .9565 0 .9474 0 .9341 0 .9230
ARX (VA) 0 .9940 0 .9890 0 .9819 0 .9712 0 .9622

• ARX: shows superior performance
• ARMAX:
EV < 0 for several simulations,
which make values of EV ⇓
whether the identification is successful,
single EV is usually greater than the one
obtained by ARX
note: this is NOT a general result !!!
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Simulation Examples – solved #2
Plant & Models
▶ MIMO State-Space system (m = 2 , p = 2 , n = 3 )
▶ White noise: 4 different levels, with the same variance σ2 for both outputs
▶ Model tested: N4SID and PARSIM-K (fh = ph = 20 )

Parameters & Settings
▶ Closed-loop CL mode: data collected (u, y), with known model order

▶ reference vector r : 2 independent GBNs with a switch probability of 2%
▶ CL input: proportional control law uk = Kc(rk − yk)

▶ Monte Carlo simulations: ∀ noise level, a set of simulations with L = 500
▶ 500 for the identification stage and 500 for the validation stage

Identification performance index
Performance evaluated with the explained variance (EV ): EV (i) = 1 −

∑
k (ϵ̂

(i)
k )2∑

k (y(i)
k −y(i))2

where y (i): mean value of the i-th output
when a model returns EV (i) < 0 , the EV is considered equal to zero
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Simulation Example – solved #2
Results & Discussion

Overall: mean variance EV
for identification (ID) and validation (VA) data sets

σ2
1 σ2

2 σ2
3 σ2

4

N4SID (ID) 0 .9988 0 .9859 0 .8793 0 .4256
PARSIM-K (ID) 0 .9989 0 .9886 0 .8825 0 .4089
N4SID (VA) 0 .9988 0 .9871 0 .8766 0 .4181
PARSIM-K (VA) 0 .9988 0 .9881 0 .8758 0 .3972

PARSIM-K shows:
▶ better performance in the identification

stage
▶ a slightly lower robustness

to noise in the validation stage

A generic simulation example
Validation stage with noise variance σ2

3

▶ both PARSIM-K and N4SID:
excellent performance

▶ proper fitting of the original output
▶ despite being a hard case of CL data
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Simulation Examples – proposed

Choose among the simulation examples included in SIPPY
▶ pure numerical cases: ARX SISO, ARMAX SISO, SS
▶ Wood-berry column (*)
▶ Continuos Stirred Tank
▶ Continuos Stirred Tank Reactor (*)
▶ Triple effect evaporators (*)
▶ .. but also build your own examples and/or use your own data

Plug and Play
▶ test different models structures and algorithms
▶ test parameters sensitivity: model orders, noise levels, input design ...
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Conclusions

Some observations
▶ Systems identification is of primary importance for the success (or the failure) of

advanced control
▶ Since its origin in the process industries (identification of FIR models via

least-squares), many advances were made:
▶ The importance of data collection has been recognized and widely accepted
▶ Robust and efficient identification methods have been developed (e.g., LS, ILS, RLS,

QP, NLP)
▶ Especially for MPC design, subspace identification methods has been very popular:

▶ traditional: N4SID, MOESP, CVA;
▶ parsimonious: PARSIM-S, -P, -K, -E.

▶ Examples with software SIPPY: Systems Identification Package for PYthon
https://github.com/CPCLAB-UNIPI/SIPPY
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