
2.4 Systems identification: subspace and nonlinear
methods

Dr. Riccardo Bacci di Capaci

University of Pisa, Italy
riccardo.bacci@unipi.it

GRICU PhD School 2021
Digitalization Tools for the Chemical and Process Industries

March 12, 2021

1/47

Outline
What is systems identification ?

Conventional systems identification methods - not our focus (see 2.3 Linear Methods)

Advanced systems identification methods - our main focus
Prediction Error Methods for input-output systems
Iterative Least-Squares
Other Classical NL methods
Nonlinear Models
An industry example: valve stiction
Subspace Identification Methods

Complementaries: Input design, data collection, model performance - very quickly

Identification software packages - to do some practice
The Literature & our SIPPY
Exercises: solved and proposed

Conclusions

2/47

Objectives and main ingredients of systems identification

Objectives
Systems identification is concerned with the determination of a dynamic model of
the considered process given experimental (input and output) data

Three fundamental ingredients
1. Data set: Input (manipulated MVs or disturbance DVs variables) and output (CVs)

can be collected during specific identification campaigns or during normal plant
operation

2. Model set: A family of candidate dynamic models among which the optimal model
will be selected

3. Identification algorithm: A numerical method to calculate the model parameters
and obtain the optimal model

3/47

The typical procedure
The system identification loop (Ljung, 1999)

Input
design

Data
collection

Prior knowledge

Model set

Fit criterion

Parameters identification

Model
Validation

Good model

Bad model

4/47

Some preliminary definitions
The reference model (in discrete-time)

G(z)
ykuk

vk

Disturbance model
▶ By definition, the disturbance sequence {v} is not predictable a priori
▶ Often we assume that:

vk = H(z)ek

in which:
▶ H(z) is a stable Transfer Function (TF)
▶ ek is zero mean, white noise with variance λ: λ = E (e2

k)

The basic relation
yk = G(z)uk + H(z)ek

we want to determine two TFs: G(z) and H(z) given measured sequences {u} and {y}

5/47

Some useful definitions and results
Probability quantities
▶ Expected Value of a random variable v :

E (vk) = E (H(z)ek) =

∞∑
j=0

hjE(ek−j) = 0

in which H(z) =
∑∞

j=0 hjz−j

▶ Auto-correlation of v :

Rv (τ) = E (vkvk−τ) = E

(∞∑
j=0

hjz−jek

∞∑
j=0

hjz−jek−τ

)

= E

(∞∑
j=τ

hjhj−τ z−je2
k

)
=

∞∑
j=τ

hjhj−τE(ek−j) = λ

∞∑
j=τ

hjhj−τ

▶ When the autocorrelation function does not depend on k, the signal v is said to be
stationary

6/47

Input/output models: Linear vs. Nonlinear methods
Model structures, black-boxes and possible identification methods

Model structure
Polynomials in z

Id. Method
G(z) H(z)

FIR B(z) 1 Linear (e.g. LLS);
but also NLARX A−1 (z)B(z) A−1 (z)

ARMAX A−1 (z)B(z) A−1 (z)C(z)

Nonlinear -
Advanced
(e.g. PEM,
ILLS, RLLS)

ARMA 1 A−1 (z)C(z)

ARARX A−1 (z)B(z) A−1 (z)D−1 (z)

ARARMAX A−1 (z)B(z) A−1 (z)D−1 (z)C(z)

OE F−1 (z)B(z) 1

BJ (Box-Jenkins) F−1 (z)B(z) D−1 (z)C(z)

GEN (Generalized) A−1 (z)F−1 (z)B(z) A−1 (z)D−1 (z)C(z)

7/47

Advanced (Prediction Error) Methods: preliminaries
Motivation
▶ Linear methods and ARX/FIR models can be too simplistic, in terms of noise

description
▶ Advanced model: increase flexibility by describing equation error H(z) with a

proper dynamics of the white noise ek

Features (of PEMs)
▶ Given the output model ŷk , define the prediction error ϵk = yk − ŷk

▶ Often the prediction error is filtered: ϵF
k = L(z)ϵk , where L(z) is a suitable TF which

acts as a frequency filter
▶ Given data for N sampling times, the loss function is:

VN =
1
N

N∑
k=1

L(ϵF
k)

where L(·) is a non-negative scalar function

8/47

Prediction Error Methods: details
The optimization problem
▶ Chosen the model structure, the predictor has the form: ŷk = φT

k (θ)θ

▶ The coefficient vector (θ) has a nonlinear effect in the regressor vector φk so that
linearity is lost

▶ PEM solve an optimization problem:

θ̂N = argmin
θ∈D

VN

▶ Depending on the choice of function L(·) and of the model structure, the above
problem can be a simple Quadratic Program (QP) or a more involved NLP

▶ For specific classes of model, ad hoc optimization algorithms were developed
▶ Note that these NL problems maybe very large for MIMO systems with evident

computational issues
▶ Anyway, identification of input-output systems is always MISO

9/47

Prediction Error Methods: Model Validation
Predictors
▶ Given the general model: yk = G(z)uk + H(z)ek

▶ the prediction error: ek := ϵk = yk − ŷk

we can define:

1-step-ahead predictor
yk = G(z)uk + H(z)(yk − ŷk) ⇒ H−1 (z)ŷk = G(z)uk + (H(z)− 1)yk

ŷk = H−1 (z)G(z)uk + (1 − H−1 (z))yk

k-step-ahead predictor
ŷk = Wk(z)G(z)uk + (1 − Wk(z))yk

where:
Wk(z) = H̄k(z)H−1 (z); H̄k(z) =

k−1∑
j=0

hjz−j

being {hj} the coefficients of the finite impulse response of TF H(z)

10/47

ARMAX model
AutoRegressive Moving Average with eXternal inputs model
▶ The difference equation is:

yk + a1 yk−1 + · · ·+ ana yk−na = b1 uk−ℓ−1 + · · ·+ bnb uk−ℓ−nb+

ek + c1 ek−1 + · · ·+ cnc ek−nc

▶ noise model: the error ek has its own dynamics (as moving average)
▶ Polynomial form:

A(z)yk = B(z)uk + C(z)ek

with: C(z) = 1 + c1 z−1 + c2 z−2 + · · ·+ cnc z−nc

▶ Observation: in this model G(z) and H(z) have same poles, given that:

G(z) = A−1 (z)B(z), H(z) = A−1 (z)C(z)

▶ ARMAX can be identified via various nonlinear methods, PEMs (see later...)

11/47

Other “Advanced” input/output models

Equation-Error-Type
Different error models:
▶ “ARMA” model: A(z)yk = C(z)ek

i.e. G(z) = 1 , H(z) = A−1 (z)C(z)
Moving Average, but no eXternal part

▶ “ARARX” model: A(z)yk = B(z)uk + D(z)−1 ek

i.e. G(z) = A−1 (z)B(z), H(z) = A−1 (z)D−1 (z)
a specific AutoRegressive

▶ “ARARMAX” model: A(z)yk = B(z)uk + D(z)−1 C(z)ek

i.e. G(z) = A−1 (z)B(z), H(z) = A−1 (z)D−1 (z)C(z)
a specific ARMAX structure

12/47

Other “Advanced” input/output models
Output-Error-Type
When G(z) and H(z) are parametrized independently,
no AutoRegressive part (A(z)) is used:
▶ “Output-Error” (OE) model:

yk = F−1 (z)B(z)uk + ek

i.e. G(z) = F−1 (z)B(z), H(z) = 1
▶ “Box-Jenkins” (BJ) model:

yk = F−1 (z)B(z)uk + D−1 (z)C(z)ek

i.e. G(z) = F−1 (z)B(z), H(z) = D−1 (z)C(z)
G(z) and H(z) have different poles

General model:
A(z)yk = F−1 (z)B(z)uk + D−1 (z)C(z)ek

i.e. G(z) = A−1 (z)F−1 (z)B(z), H(z) = A−1 (z)D−1 (z)C(z)

13/47

Iterative Least-Squares for ARMAX
Preliminaries (SISO case)
▶ The parameter vector is: θ = [a1 a2 ... ana b1 ... bnb c1 ... cnc]

T ,
where the orders na,nb,nc are defined by the user, as for the time-delay ℓ

▶ The predictor is of the form: ŷk(θ) =
B(z)
C(z)uk +

[
1 − A(z)

C(z)

]
yk

▶ which can be rewritten as: ŷk(θ) = B(z)uk + [1 − A(z)]yk + [C(z)− 1][yk − ŷk(θ)]

▶ Being the predictor error: ϵk = yk − ŷk

▶ the regressor vector is: φk = [−yk−1 . . . − yk−na uk−1−ℓ . . . uk−nb−ℓ ϵk−1 . . . ϵk−nc]
T

▶ Hence, the predictor becomes: ŷk = φT
k (θ)θ

▶ which is not a linear regression: the terms ϵk can be computed only once θ is known,
i.e., φk depends on θ. Note: we call this pseudo-linear regression

▶ An iterative procedure is built to get the ”best” parameters
▶ Easy extension to MIMO ARMAX by using a MISO approach

14/47

Iterative Least-Squares for ARMAX

The procedure (1/2)
▶ The whole output vector y is: [yM yM+1 . . . yN]

with M = max(na, nb + ℓ, nc)

▶ Regressor matrix is obtained by stacking terms for k = M, . . . ,N:
ϕ = [φM φM+1 . . . φN]

T

▶ To compute parameter vector θ, ϵ sequence must be already known
▶ Start with an ARX identification and compute the first prediction error: ϵ = y − ϕθ

▶ Use ϵ sequence to update matrix ϕ and get a new θ by using standard LLS
▶ Go on updating the error sequence and matrix ϕ, so that, Iterative LLS is built
▶ At each step, a norm is computed; e.g.:

VN(θ) =
1

2(N − M + 1)
∑

k
ϵ2

k

15/47

Iterative Least-Squares for ARMAX
The procedure (2/2)
▶ If VN(θnew) < VN(θold), then θnew is taken to update matrix ϕ

▶ Otherwise a re-evaluation of θ is performed (line search method):
θ∗ = λsθnew + (1 − λs)θold

where λs =
1
2 s , being s = 1 , 2 , 3 , · · · the s-th step of re-evaluation

▶ At each step of re-evaluation:
▶ norm VN is calculated
▶ if VN(θ

∗) < VN(θold), then θ∗ is taken as the next parameter vector
▶ otherwise s is updated and a new re-evaluation is performed
▶ when 1

2 s becomes less than eps(∗) (the smallest representable positive number such that
1 .0 + eps ̸= 1 .0), procedure is stopped and θold is taken

Finally, the procedure is stopped when:
1. the method finds a minimum of VN(θ);
2. the maximum number of iterations, user defined, is reached

(∗): eps = 10−7 in Python 2.7, using 32 bit NumPy

16/47

Iterative Least-Squares for ARMAX
The scheme

17/47

NL Methods

Other Classical NL methods
▶ Recursive Least-Squares

▶ Classical Linear Least-Squares can be recursive
▶ a time-variant estimator allows a uniform variation of the model parameters along the

identification horizon
▶ A Gain Estimator, a Covariance matrix and a Forgetting Factor are required
▶ Details are here omitted, but an example MATLAB code for ARMAX is provided

▶ Nonlinear Optimization
▶ Advanced Input-Output models (e.g., BJ) may benefit from NLP
▶ NL models require NL Programming
▶ Also mixed methods are possible: e.g. grid search + LLS/PEM
▶ See a later example

18/47

Nonlinear Models - EARMAX (Karra and Karim, 2009)
Extended AutoRegressive Moving Average model
▶ An extended ARMAX structure:

yk = B(z)
A(z)uk + C(z)

A(z) ek + 1
A(z)ηk

▶ not only the noise term ek (stochastic disturbance with zero mean)
▶ but also a deterministic input disturbance ηk which is a time variant bias term

representing any external non-stationary disturbances
▶ The model to identify is: ŷk = φT

k (θ)θ + η̂k

▶ {η̂} is therefore intended as a parameter which varies slowly over time
▶ Identification method must be recursive
▶ Necessary condition: build an estimator that allows a non-uniform variation of the

model parameters, separating LTI part from time variant disturbance
▶ Parameter update with different forgetting factors between the two components
▶ An example MATLAB code is provided

19/47

Optimization Problem to Identify NL Models

Very useful implementation tools

▶ Python
Amply validated, fast, easy-to-use, open-source,
customizable

▶ CasADi
Open-source symbolic calculation through
algorithmic differentiation, numeric optimization
oriented

▶ IPOPT
Standard in the class of open-source nonlinear
programming (NLP) solvers

20/47

Nonlinear Block Models
In Discrete-Time

2 Blocks Models
Hammerstein

static nonlinear block followed by
dynamic linear block (TF)

Wiener

linear block (TF) followed by static
nonlinear block

3 Blocks Models
Hammerstein - Wiener Wiener - Hammerstein

21/47

An example of NL block model: control loop with valve stiction

Extended Hammerstein SISO system
Control valve followed by the process dynamics:

▶ χ: valve stiction output, that is, process input
▶ y : process output
▶ u: output of a generic controller (PID or MPC)
▶ v : white Gaussian output noise

Whole plant dynamics
▶ nonlinear dynamics for the sticky valve, φ(·), here also NON static
▶ linear block for the process, SS form (A, B, C)

zk+1 =

[
χk
ξk+1

]
=

[
φ(χk−1 , uk)

Aξk + Bφ(χk−1 , uk)

]
yk = Cξk + vk

χ: 1st component of the state vector

22/47

NL Valve Model
Smoothing function φS(·) ≃ φ(·) - (Bacci di Capaci et al., 2017)

χk = η1 (ek)χk−1 + (1 − η1 (ek))uk + η2 (ek)fD
where

η1 (ek) =
1
2 tanh(τ(ek + fS)) +

1
2 tanh(τ(−ek + fS))

η2 (ek) =
1
2 tanh(−τ(ek + fS)) +

1
2 tanh(τ(−ek + fS))

▶ being ek = uk − χk−1 ∼ valve position error
▶ Tuning parameter τ : ≃ 10 4 ⇒ φS(·) ≃ φ(·) higher value, sharper functions

23/47

Identification Problem (1/3)
Defining the Hammerstein model
Linear Process: ARX structure in discrete-time form

A(z)yk = B(z)χk−ℓ + ek

▶ A(z),B(z): polynomials in backward shift operator z−1 (i.e. χk = z−1 χk+1)

A(z) = 1 + a1 z−1 + a2 z−2 + . . .+ ana z−na

B(z) = b1 z−1−ℓ + b2 z−2−ℓ + . . .+ bnb z−nb−ℓ

▶ ℓ: input time-delay
▶ (na, nb): orders on the auto-regressive and exogenous terms

Non Linear Valve: the aforesaid smoothed stiction model φS(·)

Optimization variables X
▶ static and dynamic friction parameters (f̂S ,f̂D)
▶ na + nb coefficients of ARX process model

X = [f̂S , f̂D , θ̂] with θ̂ = [a1 , . . . , ana , b1 , . . . , bnb]

24/47

Identification Problem (2/3)

One-stage nonlinear optimization problem

X∗ = arg min
fS ,fD ,θ

SE(y , ŷ)

subject to:
fmin ≤ fS , fD ≤ fmax

fS ≥ fD
σ2 (χ̂) ≥ σ2

min

where
▶ ŷ = Φθ: identified process output
▶ Φ ∈ RN×na+nb : regressor matrix of the

measurements (u,y)
▶ N: number of data points
▶ χ̂: identified valve position

Remarks
▶ Square Error (SE) objective function: SE(y , ŷ) = 1

2 (y − ŷ)T (y − ŷ)
▶ Constraint on the variance σ2 (χ̂): valve is forced to oscillate due to the presence

of stiction, e.g. a safe choice σ2
min = 0 .1σ2 (u)

▶ Time-delay ℓ and model orders are assumed as parameters

25/47

Identification Problem (3/3)
Initialization
Suitable initial point X0 :
▶ θ̂0 : ARX model identification, valve stiction free

θ̂0 = (ϕ0)
+y = [ϕT

0 ϕ0]
−1ϕT

0 y
ϕ0 : initial regressor matrix computed by stacking linear regressor vectors φ0 ,k ∀ time
sample k

φ0 ,k = [−yk−1 , ...,−yk−na , uk−1−td , ..., uk−nb−ℓ]
▶ f̂S,0 , f̂D,0 : define a triangular shape domain

▶ fmax ≥ fS ≥ fD ≥ fmin = 0
▶ fmax = ∆u, oscillation span of controller output
▶ fS + fD = ∆u, square-shaped signal

Multiple starts (M) to avoid to be stuck in a local minimum
Start from the domain boundaries, step ∆fS = ∆fD = 0 .5
Choose the best solution in terms of objective function and infeasibility

26/47

Subspace Identification Methods (SIM): introduction
Motivations
▶ Multivariable input-output systems identification requires prior knowledge or

trial-and-error to determine the system orders (note: Information Criteria can be
used; see complements...)

▶ Input-output systems identification is always MISO, whereas in some cases it would
desirable to directly identify MIMO models

▶ Identification of advanced multivariable models (e.g., ARMAX, OE, etc.) may
require solution of large nonconvex nonlinear programming problems

Features
▶ Direct identification of a DLTI state-space model
▶ Applicable to both MIMO and MISO approaches
▶ Compact multivariable state-space representation
▶ Very little prior knowledge required (an upper bound to the order)
▶ Based on reliable linear algebra decompositions

27/47

State-space systems: basic definitions

DLTI system: process form

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk

▶ dimensions: x ∈ Rn, u ∈ Rm, y ∈ Rp

▶ note: n often unknown; m, p known; usually D = 0 , for physical systems
▶ noise term: split into measurement vk and process wk noise
▶ Assumption: {w}, {v} are sequences of independent random variables with zero

mean and covariances:
E(wkwT

k) = Q E(wkvT
k) = S E(vkvT

k) = R

28/47

State-space systems: basic definitions
DLTI system: innovation and predictor forms
Innovation form:

xk+1 = Axk + Buk + Kek

yk = Cxk + ek

Predictor form (AK = A − KC):
xk+1 = AK xk + Buk + Kyk

yk = Cxk + ek

where K is the steady-state Kalman filter gain, obtained from Algebraic Riccati Equation

Main assumptions
▶ (A,B) controllable; (A,C) observable; AK = A − KC strictly Schur (|λi(Ak)| < 1 , ∀ i)
▶ The innovation {ek} is a stationary, zero mean, white noise process:

E(eje⊤
j) = Re , E(eie⊤

j) = 0 for i ̸= j
▶ Input {uk} and output {yk} data sequences are available for k = 0 , . . . ,N

Indirect routes to get this LTI model
▶ They can be obtained via realization of input-output models (TF ⇒ SS)
▶ Often the obtained order is quite high, with no perceivable advantages

29/47

SIM: classification (Qin, 2006)
Traditional - N4SID, MOESP, CVA
▶ later grouped into a unifying theorem (Overschee and Moor, 1995)
▶ estimate system matrices (A,B,C , (D)) from the process form
▶ seen as a singular value decomposition (SVD) of a suitable weighted matrix
▶ basic assumption: uk and wk , vk are uncorrelated ⇒ may fail on closed-loop data
▶ do not enforce any block-triangular matrix and then casual models

Parsimoniuos - PARSIM-S, PARSIM-P, PARSIM-K, PARSIM-E
▶ estimate system matrices (A,B,C , (D),K) from the innovation/predictor form
▶ remove non-causal terms in the linear projections by enforcing causal models; in

particular, enforce the lower triangular structure of matrix Hu
r

▶ sequential PARSIM-S (Qin et al., 2005) and parallel PARSIM-P (Qin and Ljung, 2003)
• oldest and most common algorithms
• basic assumption: uk and ek are uncorrelated ⇒ still may fail on CL data

▶ PARSIM-K (Pannocchia and Calosi, 2010) and PARSIM-E algorithms (Hou et al., 2015):
• specifically consistent with CL data

30/47

Basic SIM: algorithm derivation
An r -step prediction model
▶ For each k, define an r -step prediction model (here, innovation form):

yk = Cxk + ek ; yk+1 = Cxk+1 + ek+1 = CAxk + CBuk + CKek + ek+1 ; yk+2 = . . .
ykyk+1

yk+2

...
yk+r−1

︸ ︷︷ ︸

ȳk

=

C

CA
CA2

...
CAr−1

︸ ︷︷ ︸

Γr

xk +

0 ··· ··· 0

CB 0 ··· 0
CAB CB ··· 0
...

...
. . .

...
CAr−2 B CAr−3 B ··· 0

︸ ︷︷ ︸

Hu
r

ukuk+1

uk+2

...
uk+r−1

︸ ︷︷ ︸

ūk

+

I ··· ··· 0

CK I ··· 0
CAK CK ··· 0
...

...
. . .

...
CAr−2 K CAr−3 K ··· I

︸ ︷︷ ︸

He
r

ekek+1

ek+2

...
ek+r−1

︸ ︷︷ ︸

ēk

▶ Repeat for k ∈ {r , . . . ,M = N − r + 1} and concatenate horizontally:
[ȳr ··· ȳM]︸ ︷︷ ︸

Y

= Γr [xr ··· xM]︸ ︷︷ ︸
x

+Hu
r [ūr ··· ūM]︸ ︷︷ ︸

U

+He
r [ēr ··· ēM]︸ ︷︷ ︸

E

31/47

Basic SIM: algorithm - extended observability matrix
The basic relation
▶ The previous relation is written compactly as:

Y = Γr x + Hu
r U + He

r E
▶ Γr is called extended observability matrix
▶ Hu

r and He
r are lower triangular block Toeplitz matrices

Computing the extended observability matrix
▶ Note: the different methods basically separate here.

E.g., in PARSIM-K, express:
x = [xr ··· xM] = Ar

K [x0 ··· xM−r] + [Ar−1
K B ···B]Up + [Ar−1

K K ···K]Yp

≊ [Ar−1
K B ···B Ar−1

K K ···K]︸ ︷︷ ︸
Lz

[
Up
Yp

]
︸ ︷︷ ︸

Zp

▶ Solve the basic relation: Y = Γr LzZp + Hu
r U + He

r E to obtain (Γr Lz) from LS
▶ Compute Γr , having n columns with n < r , from a truncated SVD of (Γr Lz)

32/47

Basic SIM: algorithm - compute (A,C)

Computing (A,C): another LS problem
▶ After Γr is obtained, we can easily compute C (MATLAB notation):

C = Γr (1 : p, :)

that is, first p rows of Γr , being p the output number
▶ The matrix A is instead obtained from the LS problem, by using shift-invariance

property of Γr :
Γr (p + 1 : p × r , :) = Γr (1 : p × (r − 1), :)A

▶ Hence, the solution is:

A = Γr (1 : p × (r − 1), :)+Γr (p + 1 : p × r , :)

where {·}+ is the pseudo-inverse matrix; Γr (1 : p × (r − 1), :) and Γr (p + 1 : p × r , :)
are Γr without the last and the first p rows, respectively

33/47

Basic SIM: algorithm - compute B, (D), and x0

Obtaining B and x0 via LS
▶ From: xk+1 = Axk + Buk + x0 ; ŷk = Cxk

▶ Being xk+1 = zxk , obtain: xk = (zI − A)−1 (Buk + x0)

▶ With (A,C) known, we can write a linear predictor:

ŷk = C(zI − A)−1 Buk + C(zI − A)−1 x0 = φkθ, with θ =

[
Vec(B)

x0

]
where Vec(B) is vectorized B matrix along the rows (easy extension when D ̸= 0)

▶ repeating until N and stacking: Y = ϕθ

where

Y =

y1
...

yN

 , ϕ =

φ1
...

φN

▶ Solve an LS problem: θ = (ϕ⊤ϕ)−1ϕ⊤Y

34/47

Identification software packages
Commercial packages
Many solutions from commercial vendors, covering the various identification methods
▶ System Identification Toolbox ™ in MATLAB (MathWorks, 2021):

the most famous and consolidated package
▶ Other options:

▶ ISIAC software (Tona and Bader, 2006)
▶ NI LabVIEW System Identification Toolkit (Instruments, 2021)

Open-source packages
Many examples, written on different programming languages,
as the various MATLAB-based toolboxes:

▶ UNIT (Ninness et al., 2013)
▶ CONTSID (Garnier et al., 2012)
▶ CAPTAIN (Young and Taylor, 2012)
▶ ITSIE (Guzmán et al., 2012)

35/47

SIPPY: System Identification Package for PYthon
Main features
One of most complete open-source package for Python – to the best of our knowledge ...
▶ covering a wide range of identification methods
▶ possibility to identify multivariable systems
▶ focused only on linear models
▶ excluded nonlinear systems

– see other software, e.g. NL-ARX (MathWorks, 2021) or
Hammerstein-Wiener models (Ninness et al., 2013)

Models & Data
▶ identifies both input-output and state space models
▶ uses input-output data (Open and Closed Loop)

for a general multivariable system with m inputs and p outputs:

u = [u0 u1 u2 . . . uN−1], y = [y0 y1 y2 . . . yN−1]

where N: number of samples

36/47

SIPPY: some details on state space models
Algorithms implemented
▶ modified N4SID: improved “combined algorithm 2” (Overschee and Moor, 1996)

▶ original aspect of SIPPY: include 3 Parsimonious methods
▶ truncated SVD:

▶ retaining up to the n−th singular value
▶ alternatively, specify a threshold value TV with the maximum order allowed
▶ otherwise, employ an information criteria

▶ Extensive simulation studies:
⇒ superior performance in terms of the variance of the residuals

▶ lower computation load as only a single state sequence is identified

User specifications and choices
▶ model orders and horizons (future and past)
▶ direct input-output relation, i.e., matrix D ̸= 0
▶ matrix A is analyzed with a stability test

for traditional methods, impose the stability of matrix A: ρ(A) ≡ maxi(|λi |) < 1

37/47

Summary about SIPPY
▶ An open-source package for Python with various sys id structures and methods
▶ Input-output models in 9 structures and 3 algorithms (∗):

▶ FIR, ARX ⇒ LLS
▶ ARMAX ⇒ I-LLS
▶ ARMAX, ARARX, ARARMAX, OE, BJ, GENERALIZED ⇒ NLP (∗: next release)

▶ State space models, 6 algorithms:
▶ 3 standard approaches (N4SID, MOESP, and CVA)
▶ 3 parsimonious (PARSIM-S, PARSIM-P, PARSIM-K)

▶ 3 information criteria: to help the choice of suitable model orders when not known a-priori
▶ Several file examples included: pure numerical and simulation
▶ The state-of-art MATLAB toolbox: taken as reference to test performance and accuracy
▶ Comparable results vs. MATLAB: but higher efficiency in terms of computational times

▶ Underlying code:
▶ default settings: intended to be simple for beginners
▶ user options: to set algorithms parameters
▶ repository: freely available at GITHUB

38/47

The GitHub Repository

Open-source access: https://github.com/CPCLAB-UNIPI/SIPPY

39/47

Simulation Examples – solved #1
The plant: a MIMO ARMAX system (m = 4 , p = 3)

Output 1 Output 2 Output 3

Input 1 g11 = 4z3+3 .3z2

z5−0 .3z4−0 .25z3−0 .021z2 g21 = −85z2−57 .5z−27 .7
z4−0 .4z3 g31 = 0 .2z3

z4−0 .1z3−0 .3z2

Input 2 g12 = 10z2

z5−0 .3z4−0 .25z3−0 .021z2 g22 = 71z+12 .3
z4−0 .4z3 g32 = 0 .821z2+0 .432z

z4−0 .1z3−0 .3z2

Input 3 g13 = 7z2+5 .5z+2 .2
z5−0 .3z4−0 .25z3−0 .021z2 g23 = −0 .1z3

z4−0 .4z3 g33 = 0 .1z3

z4−0 .1z3−0 .3z2

Input 4 g14 = −0 .9z3−0 .11z2

z5−0 .3z4−0 .25z3−0 .021z2 g24 = 0 .994z3

z4−0 .4z3 g34 = 0 .891z+0 .223
z4−0 .1z3−0 .3z2

Error model h1 = z5+0 .85z4+0 .32z3

z5−0 .3z4−0 .25z3−0 .021z2 h2 = z4

z4−0 .4z3 h3 = z4+0 .7z3+0 .485z2+0 .22z
z4−0 .1z3−0 .3z2

orders: p for output and error, p × m for inputs and time-delays:

na = [3 1 2], nb =

2 1 3 2
3 2 1 1
1 2 1 2

, nc = [2 0 3], Θ =

1 2 2 1
1 2 0 0
0 1 0 2

Parameters & Settings

▶ Input Data: 4 independent GBN with a switch probability equal to 3%
▶ Models tested: ARX and ARMAX, with known system orders and time-delays
▶ White noise e(i): 5 levels with different variances σ2

▶ Monte Carlo simulations: ∀ noise level, a set of simulations with N = 400 data
500 simulations for the identification stage and 500 for the validation

40/47

Simulation Examples – solved #1
Identification performance index
Performance evaluated by using the explained variance (EV):

EV (i) = 1 −
∑

k(ϵ̂
(i)
k)2∑

k(y
(i)
k − y (i))2

where y (i) is the mean value of the i-th output
When a model returns EV (i) < 0 for an output, the EV is considered equal to zero

Results & Discussion

Average explained variance EV ,
for identification ID and validation VA data sets

σ2
1 σ2

2 σ2
3 σ2

4 σ2
5

ARMAX (ID) 0 .9423 0 .9585 0 .9513 0 .9386 0 .9293
ARX (ID) 0 .9955 0 .9918 0 .9858 0 .9769 0 .9672
ARMAX (VA) 0 .9417 0 .9565 0 .9474 0 .9341 0 .9230
ARX (VA) 0 .9940 0 .9890 0 .9819 0 .9712 0 .9622

• ARX: shows superior performance
• ARMAX:
EV < 0 for several simulations,
which make values of EV ⇓
whether the identification is successful,
single EV is usually greater than the one
obtained by ARX
note: this is NOT a general result !!!

41/47

Simulation Examples – solved #2
Plant & Models
▶ MIMO State-Space system (m = 2 , p = 2 , n = 3)
▶ White noise: 4 different levels, with the same variance σ2 for both outputs
▶ Model tested: N4SID and PARSIM-K (fh = ph = 20)

Parameters & Settings
▶ Closed-loop CL mode: data collected (u, y), with known model order

▶ reference vector r : 2 independent GBNs with a switch probability of 2%
▶ CL input: proportional control law uk = Kc(rk − yk)

▶ Monte Carlo simulations: ∀ noise level, a set of simulations with L = 500
▶ 500 for the identification stage and 500 for the validation stage

Identification performance index
Performance evaluated with the explained variance (EV): EV (i) = 1 −

∑
k (ϵ̂

(i)
k)2∑

k (y(i)
k −y(i))2

where y (i): mean value of the i-th output
when a model returns EV (i) < 0 , the EV is considered equal to zero

42/47

Simulation Example – solved #2
Results & Discussion

Overall: mean variance EV
for identification (ID) and validation (VA) data sets

σ2
1 σ2

2 σ2
3 σ2

4

N4SID (ID) 0 .9988 0 .9859 0 .8793 0 .4256
PARSIM-K (ID) 0 .9989 0 .9886 0 .8825 0 .4089
N4SID (VA) 0 .9988 0 .9871 0 .8766 0 .4181
PARSIM-K (VA) 0 .9988 0 .9881 0 .8758 0 .3972

PARSIM-K shows:
▶ better performance in the identification

stage
▶ a slightly lower robustness

to noise in the validation stage

A generic simulation example
Validation stage with noise variance σ2

3

▶ both PARSIM-K and N4SID:
excellent performance

▶ proper fitting of the original output
▶ despite being a hard case of CL data

43/47

Simulation Examples – proposed

Choose among the simulation examples included in SIPPY
▶ pure numerical cases: ARX SISO, ARMAX SISO, SS
▶ Wood-berry column (*)
▶ Continuos Stirred Tank
▶ Continuos Stirred Tank Reactor (*)
▶ Triple effect evaporators (*)
▶ .. but also build your own examples and/or use your own data

Plug and Play
▶ test different models structures and algorithms
▶ test parameters sensitivity: model orders, noise levels, input design ...

44/47

Conclusions

Some observations
▶ Systems identification is of primary importance for the success (or the failure) of

advanced control
▶ Since its origin in the process industries (identification of FIR models via

least-squares), many advances were made:
▶ The importance of data collection has been recognized and widely accepted
▶ Robust and efficient identification methods have been developed (e.g., LS, ILS, RLS,

QP, NLP)
▶ Especially for MPC design, subspace identification methods has been very popular:

▶ traditional: N4SID, MOESP, CVA;
▶ parsimonious: PARSIM-S, -P, -K, -E.

▶ Examples with software SIPPY: Systems Identification Package for PYthon
https://github.com/CPCLAB-UNIPI/SIPPY

45/47

https://github.com/CPCLAB-UNIPI/SIPPY

References I
Bacci di Capaci, R., Vaccari, M., and Pannocchia, G. (2017). A valve stiction tolerant formulation of MPC for

industrial processes. In Proceedings of the 20th IFAC World Congress, pages 9374–9379, Toulouse,
France, 9–14 July.

Garnier, H., Gilson, M., Laurain, V., and Ni, B. (2012). Developments for the CONTSID toolbox. IFAC
Proceedings Volumes, 45(16):1553 – 1558.

Guzmán, J., Rivera, D., Dormido, S., and Berenguel, M. (2012). An interactive software tool for system
identification. Advances in Engineering Software, 45(1):115 – 123.

Hou, J., Chen, F., and Liu, T. (2015). Recursive closed-loop PARSIM-E subspace identification.
IFAC-PapersOnLine, 48(28):880 – 885.

Instruments, N. (2021). NI LabVIEW System Identification Toolkit,
https://zone.ni.com/reference/en-XX/help/372458D-01/lvsysidconcepts/sysid_help_main/.

Karra, S. and Karim, M. N. (2009). Alternative model structure with simplistic noise model to identify linear time
invariant systems subjected to non-stationary disturbances. Journal of Process Control, 19:964–977.

Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall Inc., Upper Saddle River, New
Jersey, Second edition.

MathWorks (2021). MATLAB System Identification Toolbox,
https://it.mathworks.com/products/sysid.html.

Ninness, B., Wills, A., and Mills, A. (2013). UNIT: A freely available system identification toolbox. Control
Engineering Practice, 21(5):631–644.

46/47

References II

Overschee, P. V. and Moor, B. D. (1995). A unifying theorem for three subspace system identification
algorithms. Automatica, 31(12):1853–1864.

Overschee, P. V. and Moor, B. D. (1996). Subspace identification for linear systems. Kluwer Academic
Publishers.

Pannocchia, G. and Calosi, M. (2010). A predictor form PARSIMonious algorithm for closed-loop subspace
identification. Journal of Process Control, 20(4):517–524.

Qin, S. (2006). An overview of subspace identification. Computers & Chemical Engineering, 30(10):1502–1513.
Qin, S. J., Lin, W., and Ljung, L. (2005). A novel subspace identification approach with enforced causal models.

Automatica, 41(12):2043–2053.
Qin, S. J. and Ljung, L. (2003). Parallel QR implementation of subspace identification with parsimonious

models. IFAC Proceedings Volumes, 36(16):1591–1596.
Tona, P. and Bader, J. (2006). Efficient system identification for model predictive control with the ISIAC software.

In Informatics in Control, Automation and Robotics I, pages 225–232, Dordrecht. Springer Netherlands.
Young, P. and Taylor, C. (2012). Recent developments in the CAPTAIN toolbox for Matlab. IFAC Proceedings

Volumes, 45(16):1838 – 1843.

47/47

	What is systems identification ?
	Conventional systems identification methods - not our focus (see 2.3 Linear Methods)
	Advanced systems identification methods - our main focus
	Prediction Error Methods for input-output systems
	Iterative Least-Squares
	Other Classical NL methods
	Nonlinear Models
	An industry example: valve stiction
	Subspace Identification Methods

	Complementaries: Input design, data collection, model performance - very quickly
	Identification software packages - to do some practice
	The Literature & our SIPPY
	Exercises: solved and proposed

	Conclusions
	References

