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Outline

What is systems identification ?
Conventional systems identification methods - not our focus (see 2.3 Linear Methods)

Advanced systems identification methods - our main focus
Prediction Error Methods for input-output systems
Iterative Least-Squares
Other Classical NL methods
Nonlinear Models
An industry example: valve stiction
Subspace ldentification Methods

Complementaries: Input design, data collection, model performance - very quickly

Identification software packages - to do some practice
The Literature & our SIPPY
Exercises: solved and proposed

®

Conglusions
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Objectives and main ingredients of systems identification

Objectives

Systems identification is concerned with the determination of a dynamic model of
the considered process given experimental (input and output) data

Three fundamental ingredients

1. Data set: Input (manipulated MVs or disturbance DVs variables) and output (CVs)
can be collected during specific identification campaigns or during normal plant
operation

2. Model set: A family of candidate dynamic models among which the optimal model
will be selected

3. Identification algorithm: A numerical method to calculate the model parameters
and obtain the optimal model

J.I @
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The typical procedure
The system identification loop (Ljung, 1999)

Prior knowledge,

Input

design

@) I
Datf.l Model set
collection

Fit criterion

[ Parameters identification F

Bad model

B

Good model
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Some preliminary definitions

The reference model (in discrete-time)

Vk

Uy Yk

Disturbance model

> By definition, the disturbance sequence {v} is not predictable a priori
» Often we assume that:

vk = H(z)ex
in which:
> H(z) is a stable Transfer Function (TF)
> ¢, is zero mean, white noise with variance \: A=E(ef)

The basic relation
vk = G(z)ux + H(z)ex

®

we want to determine two TFs: G(z) and H(z) given measured sequences {u} and {y}
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Some useful definitions and results
Probability quantities

» Expected Value of a random variable v:
£ (i) =& (H(z)ew) = > hiE(ewj) =0
j=0
in which H(z) = >>°, hjz/

» Auto-correlation of v:

RV(T) 5 Vka T = <th JekZhZ Jek .,_)
—£<Zhh L,z ek> Zth -E(ex—j) _AZth .

» When the autocorrelation function does not depend on k, the signal v is said to be

=y

stationary

B/47
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Input/output models: Linear vs. Nonlinear methods

Model structures, black-boxes and possible identification methods

Polynomials in z

Model structure Id. Method
G(2) H(z)
FIR B(z) 1 Linear (e.g. LLS);
ARX A—1 (Z) B(Z) A—1 (Z) but also NL
ARMAX A~1(2)B(2) A~1(2)C(2)
ARMA 1 A~1(2)C(2) .
Nonlinear -
ARARX A~1(2)B(z) A~'(2)D7'(z)  Advanced
~1(,\B(z -1 A\D-1(2\C(z) (e-9- PEM,
ARARMAX ABGE) AP (% PR
OE F~1(2)B(z2) 1
BJ (Box-Jenkins) F~1(2)B(z2) D~1(z)C(2)
1

®

GEN (Generalized)

A~ (2)F1(2)B(z) AT'(2)D7(2)C(2)
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Advanced (Prediction Error) Methods: preliminaries
Motivation

» Linear methods and ARX/FIR models can be too simplistic, in terms of noise
description

» Advanced model: increase flexibility by describing equation error H(z) with a
proper dynamics of the white noise e

Features (of PEMSs)

» Given the output model y,, define the prediction error ¢, = y, — yi

» Often the prediction error is filtered: e} = L(z)ex, where L(z) is a suitable TF which
acts as a frequency filter

» Given data for N sampling times, the loss function is:

1 N
_ § F
VN = _N 2 E(fk)

J.I @

where L(:) is a non-negative scalar function O
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Prediction Error Methods: details

The optimization problem

>
>

>

Chosen the model structure, the predictor has the form: y, = ¢ ()6

The coefficient vector (9) has a nonlinear effect in the regressor vector ¢, so that
linearity is lost

PEM solve an optimization problem:
Gy = argmin Vy
0eD

Depending on the choice of function £(:) and of the model structure, the above
problem can be a simple Quadratic Program (QP) or a more involved NLP

For specific classes of model, ad hoc optimization algorithms were developed

Note that these NL problems maybe very large for MIMO systems with evident
computational issues

Anyway, identification of input-output systems is always MISO

&
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Prediction Error Methods: Model Validation
Predictors

> Given the general model: y, = G(z)ux + H(z)ex
> the prediction error: e, := ex = yx — Vk
we can define;

1-step-ahead predictor
Yo =G@u+HEZ)yk — %) = H (2 = G(2)uk + (H(z) — 1)y«
Ve =H 1 (2)G(2)ux + (1 = H1(2))y«
k-step-ahead predictor

}7[( = Wk(Z)G(Z)Uk aF (1 — Wk(Z))yk
where: _ _ k—1 _
Wi(z) = A(2)H ™ (2);  Ai(z) =) hz™

j=0

®

being {h;} the coefficients of the finite impulse response of TF H(z)
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ARMAX model
AutoRegressive Moving Average with eXternal inputs model

» The difference equation is:
Yk +a1Yk—1+ -+ an,Yk—n, = brtk—e—1 + -+ bpUuk—p—p,+
€+ C1€k—1+ -+ Cn.€k—n,

» noise model: the error e, has its own dynamics (as moving average)

» Polynomial form:
A(2)yk = B(z)ux + C(z)ek

with:
C@)=1+4cz 4z 2+ ez ™

> Observation: in this model G(z) and H(z) have same poles, given that:
G(z) =A™ (2)B(2),  H(z2) =AT'(2)C(2)

» ARMAX can be identified via various nonlinear methods, PEMs (see later...)

®
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Other “Advanced” input/output models

Equation-Error-Type
Different error models:
> “ARMA” model: A(Z)yk — C(z)ek
i.e. G(z)=1, H(z)=A"1(2)C(z2)
Moving Average, but no eXternal part
> “ARARX" model: A2)yk = B(z)ux + D(z) ey
i.e. G(z)=A"1(2)B(z), H(z)=A1(z)D7(z)
a specific AutoRegressive
> “ARARMAX” model: A(Z)yk _ B(z)uk + D(Z)—l C(z)ek

i.e. G(z)=A"1(2)B(z), H(z)=A"1(2)D71(2)C(z)
a specific ARMAX structure

&
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Other “Advanced” input/output models

Output-Error-Type

When G(z) and H(z) are parametrized independently,
no AutoRegressive part (A(z)) is used:

»> “Output-Error” (OE) model:
vk = F 1 (2)B(z)ux + ex
i.e. G(z)=F1(z2)B(z), H(z)=1
> “Box-Jenkins” (BJ) model:
vk = F1(2)B(z)ux + D71 (2)C(2)ex
i.e. G(z)=F1(z2)B(z), H(z) =D"1(z)C(z)
G(z) and H(z) have different poles

General model:
A(2)yk = F1(2)B(z)ux + D™ (2)C(2)ex
i.e. G(z)=A"1(z)F1(2)B(2), H( )=A"1(2)D71(2)C(2)

J.I @
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Iterative Least-Squares for ARMAX
Preliminaries (SISO case)

>

vVvyVvyVvyyvy v

vy

The parameter vector is: § = [a; as ... an, by .. by, 1 ... ¢ |7
where the orders n,,n,,n. are defined by the user, as for the time-delay ¢

A(z)
1- C(z)]yk
which can be rewritten as: y, () = B(z)ux + [1 — A(2)]yx + [C(2) — 1][yx — yx(0)]
Being the predictor error: e, = yx — y«
the regressor vector is: ok = [~yk—1 -+ — Yk—n, Uk—1—0 -+ Uk—pp—t €k—1 - -~ €k—n.] "

Hence, the predictor becomes: yi = ¢/ (6)0

which is not a linear regression: the terms ¢, can be computed only once 6 is known,
i.e., px depends on 6. Note: we call this pseudo-linear regression

An iterative procedure is built to get the "best” parameters
Easy extension to MIMO ARMAX by using a MISO approach

The predictor is of the form: y,(6) = 58 ug +

B
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Iterative Least-Squares for ARMAX

The procedure (1/2)

»

vVvyYVvyyvyy

The whole output vector y is: (M VM1 -~ - YN]

with M = max(n,, np + ¢, n¢)
Regressor matrix is obtained by stacking terms for k = M, ..., N:
é = lom omis - on]”
To compute parameter vector 6, e sequence must be already known
Start with an ARX identification and compute the first prediction error: ¢ = y — ¢0
Use e sequence to update matrix ¢ and get a new 6 by using standard LLS
Go on updating the error sequence and matrix ¢, so that, Iterative LLS is built
At each step, a norm is computed; e.g.:

Vin(6) = y

T
2(N=M+1)

&
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Iterative Least-Squares for ARMAX

The procedure (2/2)
> If Vy(Onew) < Vn(0o1a), then 6, is taken to update matrix ¢
» Otherwise a re-evaluation of 9 is performed (line search method):
0" = XsOnew + (1 — As)bo1d
where \s = Zi beings =1, 2, 3,--- the s-th step of re-evaluation
> At each step of re-evaluation:

»> norm V) is calculated
> if Vu(6*) < Vn(Boia), then 67 is taken as the next parameter vector
> otherwise s is updated and a new re-evaluation is performed

> when X becomes less than eps™* (the smallest representable positive number such that

1.0+ czeps # 1.0), procedure is stopped and 6,4 is taken
Finally, the procedure is stopped when:
1. the method finds a minimum of V) (0);
2. the maximum number of iterations, user defined, is reached

8

(*): eps = 10~7 in Python 2.7, using 32 bit NumPy
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Iterative Least-Squares for ARMAX

The scheme

Yes

Input-Output data
wy

l

Parameter estimation

No

Reached maximum
iterations?

Onew

Parameter re-evaluation
9

l

No
VN(Onew) < Vn(Ooia) ?

6" ~ 610 ?

Yes

Yes

o

Error sequence

updating
€

Vy(0") < Vy(8ga) ?

Yes {

Build the model

with the last &
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NL Methods

Other Classical NL methods

» Recursive Least-Squares

> Classical Linear Least-Squares can be recursive
> a time-variant estimator allows a uniform variation of the model parameters along the
identification horizon
> A Gain Estimator, a Covariance matrix and a Forgetting Factor are required
» Details are here omitted, but an example MATLAB code for ARMAX is provided
» Nonlinear Optimization
» Advanced Input-Output models (e.g., BJ) may benefit from NLP
> NL models require NL Programming

> Also mixed methods are possible: e.g. grid search + LLS/PEM
> See a later example

J.I @
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Nonlinear Models - EARMAX (Karra and Karim, 2009)

Extended AutoRegressive Moving Average model

»

vy

vvyyvyy

vy

An extended ARMAX structure:
not only the noise term e, (stochastic disturbance with zero mean)

but also a deterministic input disturbance 7, which is a time variant bias term
representing any external non-stationary disturbances

The model to identify is: yx = ¢/ (6)6 + 1«
{1} is therefore intended as a parameter which varies slowly over time
Identification method must be recursive

Necessary condition: build an estimator that allows a non-uniform variation of the
model parameters, separating LTI part from time variant disturbance

Parameter update with different forgetting factors between the two components
An example MATLAB code is provided

&

O
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Optimization Problem to Identify NL Models

Very useful implementation tools

> Python
Amply validated, fast, easy-to-use, open-source,
customizable

» CasADi .o
Open-source symbolic calculation through V4 =
algorithmic differentiation, numeric optimization 0/’;\> Ca SADI
oriented ¢

> IPOPT / =
Standard in the class of open-source nonlinear [ OR |
programming (NLP) solvers \\\ /

®
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Nonlinear Block Models

In Discrete-Time

2 Blocks Models

Hammerstein

> fw) G

static nonlinear block followed by
dynamic linear block (TF)

3 Blocks Models

Hammerstein - Wiener

Ly fw) 5 Gz —> hw) P

®

Wiener

5 Gz > hx s

linear block (TF) followed by static
nonlinear block

Wiener - Hammerstein

s Gyz) > fx)

B

G2 —
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An example of NL block model: control loop with valve stiction

Extended Hammerstein SISO system
Control valve followed by the process dynamics:

x: valve stiction output, that is, process input
y: process output
u: output of a generic controller (PID or MPC)

vV VvVvVYyy

v: white Gaussian output noise

Hammerstein System

NL LIN

|
r “ u : X AN Y
(sP) T (OP); V) UTen >

Whole plant dynamics
» nonlinear dynamics for the sticky valve, ¢(-), here also NON static
» linear block for the process, SS form (A, B, C)
Zent = [ Xk ] _ [ P(Xk—1, Uk) ]
Ekt1 A&k + Bo(xk—1, Uk)
vk = C&k + vk

®

x: 15t component of the state vector
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NL Valve Model
Smoothing function ¢s(-) ~ ¢(-) - (Bacci di Capaci et al., 2017)

Xk = n1(ex)Xxk—1 + (I —n1(ex))ux + n2(ex)fo
where

n1(ex) = %tanh(r(ek +fs)) + étanh(r(—ek +fs5))
W@UZ%WmFﬂ&+%»+éwmﬁ@q+g»

» being ex = ux — xk—1 ~ valve position error
» Tuning parameter 7: ~ 10% = ¢s(-) ~ o(-) higher value, sharper functions

®

1 1

0.8 05
0.6

= & 0
0.4

0.2 0.5

v =

-10 -5 0 5 10 -10 -5 0 5 10
s Y fs s Y fs
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Identification Problem (1/3)
Defining the Hammerstein model
Linear Process: ARX structure in discrete-time form
A(2)yic = B(2)Xk—t + €
> A(z), B(z): polynomials in backward shift operator z=1 (i.e. xx = 271 xk+1)

Alz) =1+ az l4+az2+... + ap,z” "

B(z) = bz 1 4 byz7 27t 4 .. £ bzt

> /: input time-delay
» (ns, np): orders on the auto-regressive and exogenous terms
Non Linear Valve: the aforesaid smoothed stiction model s(-)

Optimization variables X
> static and dynamic friction parameters (fs,p)
» n, + n, coefficients of ARX process model

s

X = [fs,fp,6] with 6 =1as,...,an, b1,...,by)

2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Identification Problem (2/3)

One-stage nonlinear optimization problem

X* =arg min SE(y,y) where i .
fs,fp,0 > y = &6 identified process output
subject to: > ¢ c RVNxnatm: regressor matrix of the
froin < fs, fo < finax measurements (u,y)
fo > fp > N: number of data points
2(X) > o2 > ¥: identified valve position
Remarks

> Square Error (SE) objective function:  SE(y,y) = Z(y — ¥) " (y — ¥)

» Constraint on the variance o2 (xX): valve is forced to oscillate due to the presence

of stiction, e.g. a safe choice 02, = 0.152(u)

» Time-delay ¢ and model orders are assumed as parameters

25/47



Identification Problem (3/3)

Initialization
Suitable initial point Xj:

» d,: ARX model identification, valve stiction free
o = (¢0) Ty = (g do) "oy
- initial regressor matrix computed by stacking linear regressor vectors ¢ , V time

sample k
(;00,/( = [_yk—ly reey _yk—nav uk—l—td! ey Uk—nb—é]

> fs,o. fD,O: define a triangular shape domain
> fyax > fs > fp > foin = 0
> fnax = Au, oscillation span of controller output
> fs+ fp = Au, square-shaped signal

Multiple starts (M) to avoid to be stuck in a local minimum
Start from the domain boundaries, step Afs = Afp = 0.5
Choose the best solution in terms of objective function and infeasibility

®

O
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Subspace Identification Methods (SIM): introduction

Motivations

» Multivariable input-output systems identification requires prior knowledge or
trial-and-error to determine the system orders (note: Information Criteria can be
used; see complements...)

> Input-output systems identification is always MISO, whereas in some cases it would
desirable to directly identify MIMO models

» |dentification of advanced multivariable models (e.g., ARMAX, OE, etc.) may
require solution of large nonconvex nonlinear programming problems

Features

» Direct identification of a DLTI state-space model

» Applicable to both MIMO and MISO approaches

» Compact multivariable state-space representation

» Very little prior knowledge required (an upper bound to the order)

»> Based on reliable linear algebra decompositions

J.I @

y O
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State-space systems: basic definitions

DLTI system: process form

@ IT‘ Tht1 E T 'T‘ @
Xk+1 = Axk + Buyg + wy (- L
Yk = Cxx + Duy + vi E
[ ]
L1

> dimensions: x € R”, u € R™, y € RP
» note: n often unknown; m, p known; usually D = 0, for physical systems
» noise term: split into measurement v, and process wy noise

» Assumption: {w}, {v} are sequences of independent random variables with zero
mean and covariances:

Ewmw/)=Q Ewmv])=S Ewv])=R

&

: O
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State-space systems: basic definitions

DLTI system: innovation and predictor forms

Innovation form: Predictor form (Ax = A— KC):
Xk+1 = Axi + Bug + Key Xpt1 = Axx + Bug + Ky
Yk = Cxi + e vk = Cxx + ex

where K is the steady-state Kalman filter gain, obtained from Algebraic Riccati Equation

Main assumptions
> (A, B) controllable; (A, C) observable; Ax = A — KC strictly Schur (|\i(A«)| < 1, Vi)
» The innovation {e} is a stationary, zero mean, white noise process:
E(ee ) =Re,  E(eief)=0 fori#j
» Input {ux} and output {y,} data sequences are available for k = 0,..., N

Indirect routes to get this LTI model
» They can be obtained via realization of input-output models (TF = SS)

®

»—Often the obtained order is quite high, with no perceivable advantages

O
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SIM: classification (Qin, 2006)

Traditional - N4ASID, MOESP, CVA
later grouped into a unifying theorem (Overschee and Moor, 1995)

> estimate system matrices (A, B, C, (D)) from the process form

> seen as a singular value decomposition (SVD) of a suitable weighted matrix
>

>

v

basic assumption: u, and wy, v, are uncorrelated = may fail on closed-loop data
do not enforce any block-triangular matrix and then casual models

Parsimoniuos - PARSIM-S, PARSIM-P, PARSIM-K, PARSIM-E
> estimate system matrices (A, B, C, (D), K) from the innovation/predictor form
» remove non-causal terms in the linear projections by enforcing causal models; in
particular, enforce the lower triangular structure of matrix H/
» sequential PARSIM-S (Qin et al., 2005) and parallel PARSIM-P (Qin and Ljung, 2003)
e oldest and most common algorithms

e basic assumption: ux and e, are uncorrelated = still may fail on CL data
» PARSIM-K (Pannocchia and Calosi, 2010) and PARSIM-E algorithms (Hou et al., 2015):

&

e specifically consistent with CL data O

ace and nonlinear methods (RBAC)
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Basic SIM: algorithm derivation

An r-step prediction model

» For each k, define an r-step prediction model (here, innovation form):
Yk = Cxk + ek ykr1 = Cxxq1 +exr1 = CAx + CBug + CKeg + exr1; k2 =---

- OQOo

CA"=2BCA"™ 3B ... 0

Yk C
Yk+1 CA
Yk+2 CA2
= Xk
Yk+-r—1 CA;‘I
Yk ry

»> Repeat for k € {r,...,M = N — r + 1} and concatenate horizontally:
o] +HE [ - o]
——

U
Ukt1
Ukt2
Uktr—1
e
! -0
CK CIK < 0
. 0

CAK
+
CA"—?K CA'=3K ... |

He

[yr... v . XM]—}—H;J[E:'
——
Y U E
2.4 Systems identification: subspace and nonlinear methods (RBdC)
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Basic SIM: algorithm - extended observability matrix

The basic relation
» The previous relation is written compactly as:
Y="rx+H'U+ HE
» [, is called extended observability matrix
> H and Hf are lower triangular block Toeplitz matrices

Computing the extended observability matrix

» Note: the different methods basically separate here.
E.g., in PARSIM-K, express:
x =[x ou] = A [0 - s+ (416 8] Up + [A7K K] Y,

R [ATB B ATK K] [’;’,ﬁ]

L
z Z
> Solve the basic relation: Y =T, L,Z, + H*U + HZE to obtain (I, L,) from LS
g > [Compute I, having n columns with n < r, from a truncated SVD of (I, L,)
2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Basic SIM: algorithm - compute (A, C)
Computing (A, C): another LS problem
> After I, is obtained, we can easily compute C (MATLAB notation):
C="r.(1:p,)

that is, first p rows of I, being p the output number

» The matrix A is instead obtained from the LS problem, by using shift-invariance
property of I,:
F(p+1:pxr,:)=r(I:px(r—1),:)A

» Hence, the solution is:
A=T,(1:px(r—1),) " (p+1:pxr,:)

where {-} T is the pseudo-inverse matrix; [, (1 : px (r—1),:)and [, (p+ 1 :p xr,:)
are I, without the last and the first p rows, respectively

&

O
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Basic SIM: algorithm - compute B, (D), and xp
Obtaining B and x, via LS

» From: Xk+1 = Axx + Buk + xp; Yk = Cx
> Being xx;1 = zxx, obtain: x, = (z/ — A)~1(Buy + xp)
» With (A, C) known, we can write a linear predictor:

V= Clzl — A IBuc+ C(zl — A)"Ixg = @i,  with 6 = [VeC(B)}

X0

where Vec(B) is vectorized B matrix along the rows (easy extension when D # 0)

» repeating until N and stacking: Y = 6
where yi 01
Y = , o=
YN PN
> Solve an LS problem: 9= (sT¢) 1Ty

2.4 Systems identification: subspace and nonlinear methods (RBdC)
24/47




Identification software packages

Commercial packages
Many solutions from commercial vendors, covering the various identification methods
» System Identification Toolbox ™ in MATLAB (MathWorks, 2021):
the most famous and consolidated package
» Other options:

> [SIAC software (Tona and Bader, 2006)
> NI LabVIEW System Identification Toolkit (Instruments, 2021)

Open-source packages

Many examples, written on different programming languages,
as the various MATLAB-based toolboxes:

> UNIT (Ninness et al., 2013)

> CONTSID (Garnier etal., 2012)

» CAPTAIN (Young and Taylor, 2012)
> |TSIE (Guzman et al., 2012)

&
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SIPPY: System Identification Package for PYthon

Main features

One of most complete open-source package for Python — to the best of our knowledge ...

» covering a wide range of identification methods

» possibility to identify multivariable systems

» focused only on linear models

» excluded nonlinear systems
— see other software, e.g. NL-ARX (MathWorks, 2021) or
Hammerstein-Wiener models (Ninness et al., 2013)

Models & Data
» identifies both input-output and state space models

» uses input-output data (Open and Closed Loop)
for a general multivariable system with m inputs and p outputs:

u=[upusuz ... un—1], Y=1[Yoy1y2 --- YN-1]

where N: number of samples

J.I @
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SIPPY: some details on state space models
Algorithms implemented
» modified N4SID: improved “combined algorithm 2" (Overschee and Moor, 1996)
» original aspect of SIPPY: include 3 Parsimonious methods
» truncated SVD:

> retaining up to the n—th singular value
> alternatively, specify a threshold value TV with the maximum order allowed
> otherwise, employ an information criteria

» Extensive simulation studies:
= superior performance in terms of the variance of the residuals

» lower computation load as only a single state sequence is identified

User specifications and choices
» model orders and horizons (future and past)
» direct input-output relation, i.e., matrix D # 0

J.I @

» matrix A is analyzed with a stability test
for traditional methods, impose the stability of matrix A:  p(A) = max;(|Ai]) < 1

~
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Summary about SIPPY

» An open-source package for Python with various sys id structures and methods

» Input-output models in 9 structures and 3 algorithms (*):
> FIR, ARX = LLS
» ARMAX = I-LLS
> ARMAX, ARARX, ARARMAX, OE, BJ, GENERALIZED =- NLP (*: next release)

State space models, 6 algorithms:
» 3 standard approaches (N4SID, MOESP, and CVA)
» 3 parsimonious (PARSIM-S, PARSIM-P, PARSIM-K)

3 information criteria: to help the choice of suitable model orders when not known a-priori

\4

Several file examples included: pure numerical and simulation

vyvyy

The state-of-art MATLAB toolbox: taken as reference to test performance and accuracy

v

Comparable results vs. MATLAB: but higher efficiency in terms of computational times

» Underlying code:
> default settings: intended to be simple for beginners GitHUb
> user options: to set algorithms parameters

repository: freely available at GITHUB
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The GitHub Repository

Open-sou rce access.

& CPCLAB-UNIPI/ SIPPY

<> Code

) Issuss &

| Pullrequests () Actions  [1] Projects  [IWi () Security L Insights

P master - ¥ 4branches © 0tags

@ RedC Update ReADME.md

Examples update: control, GBN and validation
sippy. update: control, GBN and validation

O gitignore Update gitignore to ignore folders such a ven, .ideas, etc.

O sravisyml update: control, GBN and validation

O License Update LICENSE

O README.md Update README.md

O requirements.txt Clean armax model constructor and add associated unit test
O setuppy Updating SIPPY version

O user_guide.pdf Update user_guide.pdf

README.md

Welcome to SIPPY!

Systems Identification Package for PYthon (SIPPY)

6f421c9 on 7 Dec 2020 D) 87 commits.

3 months ago
3 months ago
2years ago
3 months ago
3 yoars ago
3 mnths ago
2years ago
9 months ago

3 months ago

‘The main objective of this code is to provide different identification methods to build linear models of
C W e L e s S X L IR AT ks

PR

TP o E AT s T N P T e S P P Ty

Signin

About

https.//github.com/CPCLAB-UNIPI/SIPPY

Marketplace ~Pricing

03 Notiications

Systems Identification Package for

PYthon
@ Readme

B LGPL-30 License

Releases

Noreleases publshed

Packages

No packages published

Contributors &
-
-
Languages

© bython 100.0%

=)

&

7 sr

108

Y Fork
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Simulation Examples — solved #1
The plant: a MIMO ARMAX system (m = 4, p = 3)

Output 1 Output 2 Output 3

_ 42°4+3.37° _ —8572°-57.57—-27.7 _ 0.27°

= 4 _ 5 2 - 4 _ 3 — 4_ H_ 2
Input 1 811 = 503, 0.2523-0.021z 821 27—0.4z 831 = 3 0.17 =03z

_ 10z _ 71z+12.3 _ 0.8217°40.432z
Input 2 812 = 7503, _0.25.3—0.02122 822 = 77 0.4,3 832 = 401230322

_ 72°45.5242.2 _ _—0.17 _ 0.17°
Input 3 813 = 75 03,9_0.2529—0,02122 823 = 7453 833 = 7401230322

_ —0.92°—0.117° _ 0.9947° __0.891z40.223
Input 4 814 = 750 3;7_0.2573—0.02122 824 = 7770473 834 = 7 0175_0,322

& ey = 24 40.72°+0.4852°+0.222

5 4 3
0.85 0.32
Z'=3k 24k z ho

— _
Errormodel  h = (5770555 5.02127 79-0.473 29—0.123—0.372

orders: p for output and error, p x m for inputs and time-delays:

2132 1221
na=[312], np=|3211|, ne=[203], ©=[1200
1212 0102

Parameters & Settings
» Input Data: 4 independent GBN with a switch probability equal to 3%
» Models tested: ARX and ARMAX, with known system orders and time-delays
» White noise e(): 5 levels with different variances o

»> Monte Carlo simulations: V noise level, a set of simulations with N = 400 data

&

500 simulations for the identification stage and 500 for the validation O

2.4 Systems identification: subspace and nonlinear methods (RBdC)
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Simulation Examples — solved #1

Identification performance index

Performance evaluated by using the explained variance (EV):
Ey0 _ g @)

S =y D)2

where y() is the mean value of the i-th output
When a model returns £V < 0 for an output, the EV is considered equal to zero

Results & Discussion

Average explained variance EV,
for identification ID and validation VA data sets

= e = = Z
ARMAX (ID) 0.9423 0.9585 0.9513 0.9386 0.9293
ARX (ID) 0.9955 0.9918 0.9858 0.9769 0.9672
ARMAX (VA) 0.9417 0.9565 0.9474 0.9341 0.9230
ARX (VA) 0.9940 0.9890 0.9819 0.9712 0.9622

e ARX: shows superior performance

e ARMAX:

EV < 0 for several simulations,

which make values of EV ||

whether the identification is successful,
single EV is usually greater than the one
obtained by ARX

note: this is NOT a general result !!!

=y

ra

4 Systems identification: subspace and nonlinear methods (RBAC)
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Simulation Examples — solved #2

Plant & Models
» MIMO State-Space system (m=2,p=2,n= 3)
> White noise: 4 different levels, with the same variance o2 for both outputs
» Model tested: N4SID and PARSIM-K (f, = p, = 20)

Parameters & Settings
» Closed-loop CL mode: data collected (u, y), with known model order

» reference vector r: 2 independent GBNs with a switch probability of 2%
» CL input: proportional control law ux = Kc(rk — y«)

» Monte Carlo simulations: V noise level, a set of simulations with L = 500
» 500 for the identification stage and 500 for the validation stage

Identification performance index

. PO
Performance evaluated with the explained variance (EV): EV() = 1 — — 2k )"
; Sk —70)2
where y):  mean value of the i-th output
@) when a model returns EV() < 0, the EV is considered equal to zero O
- 2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Simulation Example — solved #2

Results & Discussion
verall: mean variance EV

or identification (ID) and validation (VA) data sets PARSIM-K shows:
of a3 o3 o3 > better performance in the identification
N4SID (ID) 0.9988 0.9859 0.8793 0.4256 stage
PARSIM-K (ID) 0.9989 0.9886 0.8825 0.4089 i
N4SID (VA) 0.9988 0.9871 0.8766 0.4181 > a slightly lower robustness

PARSIM-K (VA) 0.9988

0.9881 0.8758 0.3972 to noise in the validation stage

A generic simulation example WM
Validation stage with noise variance o2 B ww %‘(M

» both PARSIM-K and N4SID:
excellent performance

> proper fitting of the original output o ool Ml
> despite being a hard case of CL data

— Plant N4SID PARSIM-K

0 25 50 75 100 125 150 175 200
Time

=y
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Simulation Examples — proposed

Choose among the simulation examples included in SIPPY

>

vVvyVvyyvyy

pure numerical cases: ARX SISO, ARMAX SISO, SS
Wood-berry column (*)

Continuos Stirred Tank

Continuos Stirred Tank Reactor (*)

Triple effect evaporators (*)

.. but also build your own examples and/or use your own data

Plug and Play

>

> test parameters sensitivity: model orders, noise levels, input design ...

test different models structures and algorithms

s

2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Conclusions

Some observations

> Systems identification is of primary importance for the success (or the failure) of
advanced control

» Since its origin in the process industries (identification of FIR models via
least-squares), many advances were made:

» The importance of data collection has been recognized and widely accepted

> Robust and efficient identification methods have been developed (e.g., LS, ILS, RLS,
QP, NLP)

»> Especially for MPC design, subspace identification methods has been very popular:

> traditional: N4SID, MOESP, CVA;
> parsimonious: PARSIM-S, -P, -K, -E.

» Examples with software SIPPY: Systems Identification Package for PYthon
https://github.com/CPCLAB-UNIPI/SIPPY

B
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