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OUtWHSi is systems identification ?

Conventional systems identification methods - not our focus (see 2.3 Linear Methods)
FIR models via least-squares
ARX models via least-squares

Advanced systems identification methods - our main focus
Prediction Error Methods for input-output systems
Iterative Least-Squares
Recursive Least-Squares
Nonlinear Models
An industry example: valve stiction
Subspace ldentification Methods

Complementaries: Input design, data collection, model performance - very quickly
Conventional data collection via step tests
Advanced data collection methods: OL & CL data collection
Information criteria & Model validation

Identification software packages - to do some practice
The Literature & our SIPPY

&
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Objectives and main ingredients of systems identification

Objectives

Systems identification is concerned with the determination of a dynamic model of
the considered process given experimental (input and output) data

Three fundamental ingredients

1. Data set: Input (manipulated MVs or disturbance DVs variables) and output (CVs)
can be collected during specific identification campaigns or during normal plant
operation

2. Model set: A family of candidate dynamic models among which the optimal model
will be selected

3. Identification algorithm: A numerical method to calculate the model parameters
and obtain the optimal model

J.I @
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The typical procedure
The system identification loop (Ljung, 1999)

Prior knowledge,

Input

design

@) I
Datf.l Model set
collection

Fit criterion

[ Parameters identification F

Bad model

B

Good model
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Some preliminary definitions

The reference model (in discrete-time)

Vk

Uy Yk

Disturbance model

> By definition, the disturbance sequence {v} is not predictable a priori
» Often we assume that:

vk = H(z)ex
in which:
> H(z) is a stable Transfer Function (TF)
> ¢, is zero mean, white noise with variance \: A=E(ef)

The basic relation
vk = G(z)ux + H(z)ex

®

we want to determine two TFs: G(z) and H(z) given measured sequences {u} and {y}
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Some useful definitions and results
Probability quantities

» Expected Value of a random variable v:
£ (i) =& (H(z)ew) = > hiE(ewj) =0
j=0
in which H(z) = >>°, hjz/

» Auto-correlation of v:

RV(T) 5 Vka T = <th JekZhZ Jek .,_)
—£<Zhh L,z ek> Zth -E(ex—j) _AZth .

» When the autocorrelation function does not depend on k, the signal v is said to be

=y

stationary

B/67
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Input/output models: Linear vs. Nonlinear methods

Model structures, black-boxes and possible identification methods

Polynomials in z

Model structure Id. Method
G(2) H(z)
FIR B(z) 1 Linear (e.g. LLS);
ARX A—1 (Z) B(Z) A—1 (Z) but also NL
ARMAX A~1(2)B(2) A~1(2)C(2)
ARMA 1 A~1(2)C(2) .
Nonlinear -
ARARX A~1(2)B(z) A~'(2)D7'(z)  Advanced
~1(,\B(z -1 A\D-1(2\C(z) (e-9- PEM,
ARARMAX ABGE) AP (% PR
OE F~1(2)B(z2) 1
BJ (Box-Jenkins) F~1(2)B(z2) D~1(z)C(2)
1

®

GEN (Generalized)

A~ (2)F1(2)B(z) AT'(2)D7(2)C(2)
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Linear Methods: FIR model for SISO systems

Ideal and practical Finite Impulse Response model
» The ideal convolution model in discrete time is:

Y=Y hjuk
j=0

with {h;} coefficients of the finite impulse response
> For open-loop stable systems, it follows that: lim;_,. h; = 0

» The practical FIR model is limited: " oo sor]| X x_zndorder
M 0151 008}
*
— o . * 0.06
Yk Z; hJ Uk - =0 .‘0 a 0.04
= 0.05 "" 002
where M > 0 is the model horizon N
e 10 20 30 40 50 60 =0 020 10 20 30 10 50 60 70 80

=y

J
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FIR model: identification via least-squares
Linear predictor construction
> Assume N input and output data are available: [uo....un ], [0,y ]
» For each k > M, write (note that usually hy = 0):
Yk = hiug_g 4+ houg_2 + - -+ hyug—m + ex = 0k + ex

where: ¢y = [ti-1 -z - u—m], and § = [h; by - hM]T
are regressor and parameter vectors, respectively

» Stack all terms for k = M, ..., N:

Ym M em
YM+1 PM+1 eM+1
w en en

Least-squares problem and solution
» Mean Square Error (MSE) loss function'

Vis(0 =N Z € y ?0) " (y — #9)

®

» Well known solution (with pseudo mverse) 0= (p"p) o'y =0"y
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Multivariable FIR model
Extension to Multiple Input Multiple Output (MIMO) systems

» Consider a system with m inputs (u2), u®, ..., u(™) and p outputs
(y(l) @, ... (p))
> For each output (j), a Multiple Input Single Output (MISO) approach is used:
M

=3 S s A
=1 j=1 =

_ <pk1)6(’1) + ‘Pt(<2)9(i2) bt (p,((m)a(im) + e/((i)
» Stacking all terms for k = M, ..., N,
with 00 = [400 ... 0m |7 and gy = [¢@ . o™ ]
Y0 = ¢80 4+ &) = g — )/ ()
Input and output relations
» The user defines which inputs affect the response of each output y(")
»>_This input/output relations are decided using preliminary tests

=y
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Comments of the FIR model

Good features of FIR models

> Very little prior knowledge is required, except which input/output coefficients
need to be determined

> |t is statistically unbiased and consistent

Bad features of FIR models

> |tis over-parameterized, and can be noise sensitive because the regressor matrix
¢ is often ill-conditioned

> ltis a (very) high-order model: order reduction may be necessary

Extension to measurable disturbances

» Measurable disturbances d are treated as additional inputs of the MISO structure:
ylg,-) _ @f(l)e(il) i SDE(Q)G(IQ) N @E(m)e(im) et (pf(m+nd)9(i(m+nd)) + e,((i)

®

O
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ARX model for SISO systems: description

ARX (AutoRegressive with eXternal Inputs) model
» Scheme:

Yk

> Model: A(z)yk = B(z)uk + ex

» Polynomials (SISO case):

A(Z) =1+ 312_1 4 322—2 dhooodt anaZ_na
B(z) = byz= D) 4 bpz=U+2) .. p, 7= (M)

> [n,, np) are the model orders and ¢ is the time-delay, all user defined

B
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ARX model for SISO systems: identification

“‘Equation error model”
The error e, enters directly the difference equation:

Yk +aryk—1 + -+ anYk—n, = brtg—p—1 + -+ bp,Ux_g_pn, + €k

Regressor and LS Solution [a; ]
> Linear regressor ¢: :
~ an
Vo= ["Yk—1 * —Yken, Uk—e—1 - Uk—t—n,) b;
Pk o
_bnb_
———
0
» Stack all terms for k = npy, ..., N with n, = max (n;,np +4€) =y = ¢p0 + e

> LS solution as for the FIR model: 6 = (¢ " ¢) 1oy = ¢ty
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ARX identification for MIMO systems

Multi-variable “equation error” model

» Model (for simplicity time-delay ¢ is omitted):

Vi +ArYk—1+ -+ AnYk—n, = Brug_1 + -+ + B, uk—pn, + e

®

> where A; € RP*P (fori=1,...,n;)and B; € RP*™ (fori=1,...,np);
T
y, u, e are all vectors, e.g. ux_; = [uil_)l, u2 .., ui’f)l] eR™
. —Yk—
Regressor and LS Solution !
> Linear regressor Ve=[A1 - Aw Bi - By _lj;(k:lna
@T
Uk—n,
> As for FIR model, MISO approach and LS solution:  — 7
vy = o) 4 ) = gi) = p+() P
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Advanced (Prediction Error) Methods: preliminaries
Motivation

» Linear methods and ARX/FIR models can be too simplistic, in terms of noise
description

» Advanced model: increase flexibility by describing equation error H(z) with a
proper dynamics of the white noise e

Features (of PEMSs)

» Given the output model y,, define the prediction error ¢, = y, — yi

» Often the prediction error is filtered: e} = L(z)ex, where L(z) is a suitable TF which
acts as a frequency filter

» Given data for N sampling times, the loss function is:

1 N
_ § F
VN = _N 2 E(fk)

J.I @

where L(:) is a non-negative scalar function O
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Prediction Error Methods: details

The optimization problem

>
>

>

Chosen the model structure, the predictor has the form: y, = ¢ ()6

The coefficient vector (9) has a nonlinear effect in the regressor vector ¢, so that
linearity is lost

PEM solve an optimization problem:
Gy = argmin Vy
0eD

Depending on the choice of function £(:) and of the model structure, the above
problem can be a simple Quadratic Program (QP) or a more involved NLP

For specific classes of model, ad hoc optimization algorithms were developed

Note that these NL problems maybe very large for MIMO systems with evident
computational issues

Anyway, identification of input-output systems is always MISO

&
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Prediction Error Methods: Model Validation
Predictors

> Given the general model: y, = G(z)ux + H(z)ex
> the prediction error: e, := ex = yx — Vk
we can define;

1-step-ahead predictor
Yo =G@u+HEZ)yk — %) = H (2 = G(2)uk + (H(z) — 1)y«
Ve =H 1 (2)G(2)ux + (1 = H1(2))y«
k-step-ahead predictor

}7[( = Wk(Z)G(Z)Uk aF (1 — Wk(Z))yk
where: _ _ k—1 _
Wi(z) = A(2)H ™ (2);  Ai(z) =) hz™

j=0

®

being {h;} the coefficients of the finite impulse response of TF H(z)
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ARMAX model
AutoRegressive Moving Average with eXternal inputs model

» The difference equation is:
Yk +a1Yk—1+ -+ an,Yk—n, = brtk—e—1 + -+ bpUuk—p—p,+
€+ C1€k—1+ -+ Cn.€k—n,

» noise model: the error e, has its own dynamics (as moving average)

» Polynomial form:
A(2)yk = B(z)ux + C(z)ek

with:
C@)=1+4cz 4z 2+ ez ™

> Observation: in this model G(z) and H(z) have same poles, given that:
G(z) =A™ (2)B(2),  H(z2) =AT'(2)C(2)

» ARMAX can be identified via various nonlinear methods, PEMs (see later...)

®
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Other “Advanced” input/output models

Equation-Error-Type
Different error models:
> “ARMA” model: A(Z)yk — C(z)ek
i.e. G(z)=1, H(z)=A"1(2)C(z2)
Moving Average, but no eXternal part
> “ARARX" model: A2)yk = B(z)ux + D(z) ey
i.e. G(z)=A"1(2)B(z), H(z)=A1(z)D7(z)
a specific AutoRegressive
> “ARARMAX” model: A(Z)yk _ B(z)uk + D(Z)—l C(z)ek

i.e. G(z)=A"1(2)B(z), H(z)=A"1(2)D71(2)C(z)
a specific ARMAX structure

&
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Other “Advanced” input/output models

Output-Error-Type

When G(z) and H(z) are parametrized independently,
no AutoRegressive part (A(z)) is used:

»> “Output-Error” (OE) model:
vk = F 1 (2)B(z)ux + ex
i.e. G(z)=F1(z2)B(z), H(z)=1
> “Box-Jenkins” (BJ) model:
vk = F1(2)B(z)ux + D71 (2)C(2)ex
i.e. G(z)=F1(z2)B(z), H(z) =D"1(z)C(z)
G(z) and H(z) have different poles

General model:
A(2)yk = F1(2)B(z)ux + D™ (2)C(2)ex
i.e. G(z)=A"1(z)F1(2)B(2), H( )=A"1(2)D71(2)C(2)

J.I @
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Iterative Least-Squares for ARMAX
Preliminaries (SISO case)

>

vVvyVvyVvyyvy v

vy

The parameter vector is: § = [a; as ... an, by .. by, 1 ... ¢ |7
where the orders n,,n,,n. are defined by the user, as for the time-delay ¢

A(z)
1- C(z)]yk
which can be rewritten as: y, () = B(z)ux + [1 — A(2)]yx + [C(2) — 1][yx — yx(0)]
Being the predictor error: e, = yx — y«
the regressor vector is: ok = [~yk—1 -+ — Yk—n, Uk—1—0 -+ Uk—pp—t €k—1 - -~ €k—n.] "

Hence, the predictor becomes: yi = ¢/ (6)0

which is not a linear regression: the terms ¢, can be computed only once 6 is known,
i.e., px depends on 6. Note: we call this pseudo-linear regression

An iterative procedure is built to get the "best” parameters
Easy extension to MIMO ARMAX by using a MISO approach

The predictor is of the form: y,(6) = 58 ug +

B
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Iterative Least-Squares for ARMAX

The procedure (1/2)

»

vVvyYVvyyvyy

The whole output vector y is: (M VM1 -~ - YN]

with M = max(n,, np + ¢, n¢)
Regressor matrix is obtained by stacking terms for k = M, ..., N:
é = lom omis - on]”
To compute parameter vector 6, e sequence must be already known
Start with an ARX identification and compute the first prediction error: ¢ = y — ¢0
Use e sequence to update matrix ¢ and get a new 6 by using standard LLS
Go on updating the error sequence and matrix ¢, so that, Iterative LLS is built
At each step, a norm is computed; e.g.:

Vin(6) = y

T
2(N=M+1)

&
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Iterative Least-Squares for ARMAX

The procedure (2/2)
> If Vy(Onew) < Vn(0o1a), then 6, is taken to update matrix ¢
» Otherwise a re-evaluation of 9 is performed (line search method):
0" = XsOnew + (1 — As)bo1d
where \s = Zi beings =1, 2, 3,--- the s-th step of re-evaluation
> At each step of re-evaluation:

»> norm V) is calculated
> if Vu(6*) < Vn(Boia), then 67 is taken as the next parameter vector
> otherwise s is updated and a new re-evaluation is performed

> when X becomes less than eps™* (the smallest representable positive number such that

1.0+ czeps # 1.0), procedure is stopped and 6,4 is taken
Finally, the procedure is stopped when:
1. the method finds a minimum of V) (0);
2. the maximum number of iterations, user defined, is reached

8

(*): eps = 10~7 in Python 2.7, using 32 bit NumPy
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?

Iterative Least-Squares for ARMAX

The scheme

Yes

Input-Output data
wy

l

Parameter estimation

No

Reached maximum
iterations?

Onew

Parameter re-evaluation
9

l

No
VN(Onew) < Vn(Ooia) ?

6" ~ 610 ?

Yes

Yes

o

Error sequence

updating
€

Vy(0") < Vy(8ga) ?

Yes {

Build the model

with the last &
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NL Methods

Other Classical NL methods

» Recursive Least-Squares

> Classical Linear Least-Squares can be recursive
> a time-variant estimator allows a uniform variation of the model parameters along the
identification horizon
> A Gain Estimator, a Covariance matrix and a Forgetting Factor are required
» Details are here omitted, but an example MATLAB code for ARMAX is provided
» Nonlinear Optimization
> Advanced Input-Output model may benefit from NLP
> NL models require NL Programming

> Also mixed methods are possible: e.g. grid search + LLS/PEM
> See a later example

J.I @

= O
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Nonlinear Models - EARMAX (Karra and Karim, 2009)

Extended AutoRegressive Moving Average model

»

vy

vvyyvyy

vy

An extended ARMAX structure:
not only the noise term e, (stochastic disturbance with zero mean)

but also a deterministic input disturbance 7, which is a time variant bias term
representing any external non-stationary disturbances

The model to identify is: yx = ¢/ (6)6 + 1«
{1} is therefore intended as a parameter which varies slowly over time
Identification method must be recursive

Necessary condition: build an estimator that allows a non-uniform variation of the
model parameters, separating LTI part from time variant disturbance

Parameter update with different forgetting factors between the two components
An example MATLAB code is provided

&

O
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Optimization Problem to Identify NL Models

Very useful implementation tools

> Python
Amply validated, fast, easy-to-use, open-source,
customizable

» CasADi .o
Open-source symbolic calculation through V4 =
algorithmic differentiation, numeric optimization 0/’;\> Ca SADI
oriented ¢

> IPOPT / =
Standard in the class of open-source nonlinear [ OR |
programming (NLP) solvers \\\ /

®
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Nonlinear Block Models

In Discrete-Time

2 Blocks Models

Hammerstein

> fw) G

static nonlinear block followed by
dynamic linear block (TF)

3 Blocks Models

Hammerstein - Wiener

Ly fw) 5 Gz —> hw) P

®

Wiener

5 Gz > hx s

linear block (TF) followed by static
nonlinear block

Wiener - Hammerstein

s Gyz) > fx)

B

G2 —
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An example of NL block model: control loop with valve stiction

Extended Hammerstein SISO system
Control valve followed by the process dynamics:

x: valve stiction output, that is, process input
y: process output
u: output of a generic controller (PID or MPC)

vV VvVvVYyy

v: white Gaussian output noise

Hammerstein System

NL LIN

|
r “ u : X AN Y
(sP) T (OP); V) UTen >

Whole plant dynamics
» nonlinear dynamics for the sticky valve, ¢(-), here also NON static
» linear block for the process, SS form (A, B, C)
Zent = [ Xk ] _ [ P(Xk—1, Uk) ]
Ekt1 A&k + Bo(xk—1, Uk)
vk = C&k + vk

®

x: 15t component of the state vector
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Stiction Modeling
Generalities
» Stiction description (Garcia, 2008):
> detailed physical models » empirical (data-driven) models
» Data-driven models are useful: few parameters and relatively simple algebra
» Most established models use 2 parameters:
> Choudhury et al. (2005), Kano et al. (2004): "
stickband + deadband (S) and stick-slip jump (J)

» He et al. (2007):
dynamic (fp) and static (fs) friction

A proven model - (He et al., 2007) o

» Reproduce valve response obtained with physical stiction models without involving
computationally intensive numerical integration

» Fast response from the valve is assumed, i.e. transient dynamics ignored

=y

»Only the stationary-state values of stem position are considered

2.4 Systems identification bs R | N T R .
) J
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Discontinuous Valve Model

Data-driven stiction model (He et al., 2007) - Standard formulation
The sticky valve has a nonlinear dynamics xx = p(xk—1, U):

= Xk—1 + [ex — sign(ex)fp] if |ex| > fs
Xk—1 if lex| < fs
> fs, fp: static and dynamic friction parameters, fs > fp
» e, = ux — xk—1 ~ valve position error

Rewritten as:

Normalized OP: ux

ug — fD if Uk — Xk—1 > fs
Xk = { U + fp if Ux — Xk—1 < —fs
Xk—1 if Juk — xk—1| < fs

@(:): ~ a switching “three-mode” discontinuous model P e )

=y
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NL Valve Model
Smoothing function ¢s(-) ~ ¢(-) - (Bacci di Capaci et al., 2017)

Xk = n1(ex)Xxk—1 + (I —n1(ex))ux + n2(ex)fo
where

n1(ex) = %tanh(r(ek +fs)) + étanh(r(—ek +fs5))
W@UZ%WmFﬂ&+%»+éwmﬁ@q+g»

» being ex = ux — xk—1 ~ valve position error
» Tuning parameter 7: ~ 10% = ¢s(-) ~ o(-) higher value, sharper functions

®

1 1

0.8 05
0.6

= & 0
0.4

0.2 0.5

v =

-10 -5 0 5 10 -10 -5 0 5 10
s Y fs s Y fs
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Identification Problem (1/4)
Defining the Hammerstein model
Linear Process: ARX structure in discrete-time form
A(2)yic = B(2)Xk—t + €
> A(z), B(z): polynomials in backward shift operator z=1 (i.e. xx = 271 xk+1)

Alz) =1+ az l4+az2+... + ap,z” "

B(z) = bz 1 4 byz7 27t 4 .. £ bzt

> /: input time-delay
» (ns, np): orders on the auto-regressive and exogenous terms
Non Linear Valve: the aforesaid smoothed stiction model s(-)

Optimization variables X
> static and dynamic friction parameters (fs,p)
» n, + n, coefficients of ARX process model

s

X = [fs,fp,6] with 6 =1as,...,an, b1,...,by)

2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Identification Problem (2/4)

One-stage nonlinear optimization problem

X* =arg min SE(y,y) where i .
fs,fp,0 > y = &6 identified process output
subject to: > ¢ c RVNxnatm: regressor matrix of the
froin < fs, fo < finax measurements (u,y)
fo > fp > N: number of data points
2(X) > o2 > ¥: identified valve position
Remarks

> Square Error (SE) objective function:  SE(y,y) = Z(y — ¥) " (y — ¥)

» Constraint on the variance o2 (xX): valve is forced to oscillate due to the presence

of stiction, e.g. a safe choice 02, = 0.152(u)

» Time-delay ¢ and model orders are assumed as parameters

34/67



Identification Problem (3/4)

Initialization
Suitable initial point Xj:

» d,: ARX model identification, valve stiction free
o = (¢0) Ty = (g do) "oy
- initial regressor matrix computed by stacking linear regressor vectors ¢ , V time

sample k
(;00,/( = [_yk—ly reey _yk—nav uk—l—td! ey Uk—nb—é]

> fs,o. fD,O: define a triangular shape domain
> fyax > fs > fp > foin = 0
> fnax = Au, oscillation span of controller output
> fs+ fp = Au, square-shaped signal

Multiple starts (M) to avoid to be stuck in a local minimum
Start from the domain boundaries, step Afs = Afp = 0.5
Choose the best solution in terms of objective function and infeasibility

®

O
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Subspace Identification Methods (SIM): introduction

Motivations

» Multivariable input-output systems identification requires prior knowledge or
trial-and-error to determine the system orders (note: Information Criteria can be
used; see complements...)

> Input-output systems identification is always MISO, whereas in some cases it would
desirable to directly identify MIMO models

» |dentification of advanced multivariable models (e.g., ARMAX, OE, etc.) may
require solution of large nonconvex nonlinear programming problems

Features

» Direct identification of a DLTI state-space model

» Applicable to both MIMO and MISO approaches

» Compact multivariable state-space representation

» Very little prior knowledge required (an upper bound to the order)

»> Based on reliable linear algebra decompositions

J.I @

y O
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State-space systems: basic definitions

DLTI system: process form

@ IT‘ Tht1 E T 'T‘ @
Xk+1 = Axk + Buyg + wy (- L
Yk = Cxx + Duy + vi E
[ ]
L1

> dimensions: x € R”, u € R™, y € RP
» note: n often unknown; m, p known; usually D = 0, for physical systems
» noise term: split into measurement v, and process wy noise

» Assumption: {w}, {v} are sequences of independent random variables with zero
mean and covariances:

Ewmw/)=Q Ewmv])=S Ewv])=R

&

: O
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State-space systems: basic definitions

DLTI system: innovation and predictor forms

Innovation form: Predictor form (Ax = A— KC):
Xk+1 = Axi + Bug + Key Xpt1 = Axx + Bug + Ky
Yk = Cxi + e vk = Cxx + ex

where K is the steady-state Kalman filter gain, obtained from Algebraic Riccati Equation

Main assumptions
> (A, B) controllable; (A, C) observable; Ax = A — KC strictly Schur (|\i(A«)| < 1, Vi)
» The innovation {e} is a stationary, zero mean, white noise process:
E(ee ) =Re,  E(eief)=0 fori#j
» Input {ux} and output {y,} data sequences are available for k = 0,..., N

Indirect routes to get this LTI model
» They can be obtained via realization of input-output models (TF = SS)

®

»—Often the obtained order is quite high, with no perceivable advantages

O
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SIM: classification (Qin, 2006)

Traditional - N4ASID, MOESP, CVA
later grouped into a unifying theorem (Overschee and Moor, 1995)

> estimate system matrices (A, B, C, (D)) from the process form

> seen as a singular value decomposition (SVD) of a suitable weighted matrix
>

>

v

basic assumption: u, and wy, v, are uncorrelated = may fail on closed-loop data
do not enforce any block-triangular matrix and then casual models

Parsimoniuos - PARSIM-S, PARSIM-P, PARSIM-K, PARSIM-E
> estimate system matrices (A, B, C, (D), K) from the innovation/predictor form
» remove non-causal terms in the linear projections by enforcing causal models; in
particular, enforce the lower triangular structure of matrix H/
» sequential PARSIM-S (Qin et al., 2005) and parallel PARSIM-P (Qin and Ljung, 2003)
e oldest and most common algorithms

e basic assumption: ux and e, are uncorrelated = still may fail on CL data
» PARSIM-K (Pannocchia and Calosi, 2010) and PARSIM-E algorithms (Hou et al., 2015):

&

e specifically consistent with CL data O

ace and nonlinear methods (RBAC)
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Basic SIM: algorithm derivation

An r-step prediction model

» For each k, define an r-step prediction model (here, innovation form):
Yk = Cxk + ek ykr1 = Cxxq1 +exr1 = CAx + CBug + CKeg + exr1; k2 =---

- OQOo

CA"=2BCA"™ 3B ... 0

Yk C
Yk+1 CA
Yk+2 CA2
= Xk
Yk+-r—1 CA;‘I
Yk ry

»> Repeat for k € {r,...,M = N — r + 1} and concatenate horizontally:
o] +HE [ - o]
——

U
Ukt1
Ukt2
Uktr—1
e
! -0
CK CIK < 0
. 0

CAK
+
CA"—?K CA'=3K ... |

He

[yr... v . XM]—}—H;J[E:'
——
Y U E
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Basic SIM: algorithm - extended observability matrix

The basic relation
» The previous relation is written compactly as:
Y="rx+H'U+ HE
» [, is called extended observability matrix
> H and Hf are lower triangular block Toeplitz matrices

Computing the extended observability matrix

» Note: the different methods basically separate here.
E.g., in PARSIM-K, express:
x =[x ou] = A [0 - s+ (416 8] Up + [A7K K] Y,

R [ATB B ATK K] [’;’,ﬁ]

L
z Z
> Solve the basic relation: Y =T, L,Z, + H*U + HZE to obtain (I, L,) from LS
g > [Compute I, having n columns with n < r, from a truncated SVD of (I, L,)
2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Basic SIM: algorithm - compute (A, C)
Computing (A, C): another LS problem
> After I, is obtained, we can easily compute C (MATLAB notation):
C="r.(1:p,)

that is, first p rows of I, being p the output number

» The matrix A is instead obtained from the LS problem, by using shift-invariance
property of I,:
F(p+1:pxr,:)=r(I:px(r—1),:)A

» Hence, the solution is:
A=T,(1:px(r—1),) " (p+1:pxr,:)

where {-} T is the pseudo-inverse matrix; [, (1 : px (r—1),:)and [, (p+ 1 :p xr,:)
are I, without the last and the first p rows, respectively

&

O
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Basic SIM: algorithm - compute B, (D), and xp
Obtaining B and x, via LS

» From: Xk+1 = Axx + Buk + xp; Yk = Cx
> Being xx;1 = zxx, obtain: x, = (z/ — A)~1(Buy + xp)
» With (A, C) known, we can write a linear predictor:

V= Clzl — A IBuc+ C(zl — A)"Ixg = @i,  with 6 = [VeC(B)}

X0

where Vec(B) is vectorized B matrix along the rows (easy extension when D # 0)

» repeating until N and stacking: Y = 6
where yi 01
Y = , o=
YN PN
> Solve an LS problem: 9= (sT¢) 1Ty

2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Input Design and Data collection: objectives and practice

Objectives

> |dentification data is (generally) collected during specific campaigns
» Test duration should be minimized, but data should be informative

Functional design

» The following lists of variables are compiled:
» MV: manipulated variables
» CV: controlled variables (measurable)
» DV: disturbance variables (measurable)
» Instrumentation (sensors and actuators) may undergo into maintenance before
testing
» Prior knowledge and/or preliminary tests are used to decide:
» Amplitude of each MV variation (on the basis of static gains)

J.I @

» Duration of each MV variation (on the basis of settling times)

~
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Traditional open-loop step tests
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Limitations of step tests

The frequency content of an input signal:

» Autocorrelation function of a stationary stochastic variable {u(k)}:
Ru(r) = & (u(k)u(k — 7))

» Power spectrum or spectral density
oo

bu(w) = Y Ry(r)e ™

Signals requirements —
» |dentification signals must have a sufficiently high power spectrum in mid and low
frequency range
> A related property of signals is called persistent excitation
» Step signals have limited frequency content and do not excite the plant significantly
in all frequency ranges

®

O
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Beyond the step tests
GBN and PRBS

» Generalized Binary Noise (GBN) signals are very effective (Zhu, 2001)

> A GBN signal has two possible values {+a, —a}
> Let psy € (0, 1) be the switching probability. The signal obeys:
P luxk = —uk—1] = psw
Pluk = w—1] = 1 — psw

» PRBS are similar but periodic

Switch probability py,, = 0.02 Switch probability py,, = 0.05
1.0 1.0
0.5 0.5
s 0.0 s 0.0
-0.5 -0.5
1.0 -10

200 400 600 800 1000 0 200 400 600 800 1000

Time Time
. . 2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Closed-loop tests: basic idea

U = r 1 { ]
rk k k + k Process i
Wk

wi = —F(yk)
» Independent “setpoints” r, (GBN, PRBS) are added to wy:
Uk = e +wi = re — F(yx)

Scheme

Basic relations
» Feedback is used:

> Setpoints are used to improve excitations at higher frequencies

®
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Closed-loop vs open-loop tests

Advantageous features of open-loop signals

» There is no need to have a working controller
> Identification algorithms are always applicable to open-loop data
» Input variations (amplitude and duration) defined by the user

» Dynamic responses more easily understood
(no correlation exist between input and process noise)

Advantageous features of closed-loop signals

» Variations of outputs can be controlled
» Variations of inputs are simultaneous
» Many studies report that “closed-loop data are better suited for controller design”

®

O
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Multivariable data collection

Motivations

» Multivariable signals are more informative and excite the system in several
directions

» The nonlinearity is better understood by multivariable signals

Recommended practice

» Open-loop data collection: use independent GBN inputs
» Closed-loop data collection: use independent GBN setpoints

®
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The information criteria

Scope — find the most appropriate model orders
Basic idea: balance between:
» complexity = higher orders and longer computational times

> simplicity =- faster and more robust model-based controllers
Three common examples— for both I-O and SIMs

» AIC Akaike Information Criterion (Akaike, 1974)

» AICc Correction of Akaike Information Criterion (Sugiura, 1978)

» BIC Bayesian Information Criterion (Schwarz, 1978)

Features: — find the minimum of a specific function
including a likelihood function and a penalty term on the number of model parameters

=y

AIC—= _2 Iog(ﬁ) + 2K where £ rrAlaximizNed likelihood fLIJVnction e 7
— _Nic 22 — _Nic |gq k=1 k
2Kie(Kie + 1 (e.g., log(L) 5% log ¢ ¢ log ==L )
AlCc = AIC + #fc_; Kic: number of independent model param’étlecrs
e 1o Nic: number of data points used to compute the
BIC = —2log(£) + Kic log(Nic)

variance 2 of the model residuals e«

2.4 Systems identification: subspace and nonlinear methods (RBAC)
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Model analysis

Mean and Variance
For each output y, we compute:

N 1 N
Z y Z y Yk
k:l

i=k

2 \

to work with deviation normalized variables

Explained Variance
The variance that is explained by a model, a.k.a. correlation coefficient

N (o
_ ﬁ D1 Dk = yi)?

2
Ty

EV=R’=1

Cross-validation
Often, the Explained Variance is computed over a data set not used for computing the
model parameters (in the identification stage)

®

O
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Model validation

Maximum error estimate
» Advanced Identification methods provide an estimate on the maximum error of the
model

> |f the model is deemed not suitable, typical attempts are:

»> Change of model orders in input-output models or the maximum order in SIM
alghoritms
» Improve scaling of input and output variables

...If everything fails
> Collect new data, choosing dif