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A simple example to set the stage
Williams­Otto non­isothermal continuous­stirred tank reactor: introduction

Actual reaction scheme:

A+ B k1−→ C, r1 = k1 (Tr )cAcB ,

B+ C k2−→ P+ E, r2 = k2 (Tr )cBcC ,

C+ P k3−→ G, r3 = k3 (Tr )cC cP .

Model reaction scheme:

A+ 2B
k∗

1−→ P+ E, r∗1 = k∗
1 (Tr )cAc2

B ,

A+ B+ P
k∗

2−→ G, r∗2 = k∗
2 (Tr )cAcBcP .
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A simple example to set the stage
Williams­Otto non­isothermal continuous­stirred tank reactor: system dynamics

Plant:

dcA
dt =

QAcA0 − Qr cA
Vr

− r1 ,

dcB
dt =

QBcA0 − Qr cB
Vr

− r1 − r2 ,

dcC
dt = −Qr cC

Vr
+ r1 − r2 − r3 ,

dcP
dt = −Qr cP

Vr
+ r2 − r3 ,

dcE
dt = −Qr cE

Vr
+ r2 ,

dcG
dt = −Qr cG

Vr
+ r3 .

Model:

dcA
dt =

QAcA0 − Qr cA
Vr

− r∗1 − r∗2 ,

dcB
dt =

QBcA0 − Qr cB
Vr

− 2r∗1 − r∗2 ,

dcP
dt = −Qr cP

Vr
+ r∗1 − r∗2 ,

dcE
dt = −Qr cE

Vr
+ r∗1 ,

dcG
dt = −Qr cG

Vr
+ r∗2 ,
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A simple example to set the stage
Optimizing steady­state operation: what is desired?

▶ Operating cost: ℓc = QAcA0 pA + QBcB0 pB − Qr cPpP − Qr cE pE

▶ Operating (manipulated) variables: u =
[
QB Tr

]
The plant­based solution
▶ Plant state vector: xp =

[
cA cB cC cP cE cG

]
▶ Plant dynamics:

dxp
dt = fp(xp, u)

▶ The plant optimal steady state:

(x⋆, u⋆) = argmin
u,xp

ℓc

subject to: 0 = fp(xp, u)
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A simple example to set the stage
Optimizing steady­state operation: what can be computed?

The model­based solution
▶ Model state vector: x =

[
cA cB cP cE cG

]
▶ Model dynamics:

dx
dt = f (x , u)

▶ The model optimal steady­state:

(x̄ , ū) = argmin
u,x

ℓc

subject to: 0 = f (x , u)

▶ The model­based solution is only approximate because the model is not exact due to
plant­model mismatch.

Question: Can the plant still be driven to true plant optimality?
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A simple example to set the stage
Results: implementing the nominal model­based solution
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Williams-Otto example: model-based optimum

Actual profit: 151.3 vs. True optimal profit: 193.2. Hence 22% profit loss!
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A simple example to set the stage
How to reach plant optimality?

Real­Time Optimization
1. Implement the model­based solution
2. Wait for the system to reach a steady state
3. Use steady­state data (input and output) to modify model
4. Solve the modified model­based optimization problem
5. Go to 1



4.2 Steady-state Real-Time Optimization (Gabriele Pannocchia)
9/34

A simple example to set the stage
Results: Does RTO work?

RTO scheme with bias and gradient correction
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Williams-Otto example: RTO



4.2 Steady-state Real-Time Optimization (Gabriele Pannocchia)
10/34

A simple example to set the stage
RTO pros vs cons

Pros
▶ Convergence to the correct (... unknown) steady state is achieved when plant

gradients can be evaluated/estimated can be estimated accurately
▶ Constraints are fulfilled during iterations

Cons
▶ Need to wait for the plant to reach steady state at each iteration –> Dynamic RTO

(next module)
▶ Estimation of plant gradients may not be simple –> Various approaches (discussed

next)
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General formulation of an optimization problem

The three ingredients
1. x ∈ Rn, vector of variables
2. f : Rn → R, scalar objective function to be minimized
3. g : Rn → Rm, vector function of m inequality constraints that the variables must

satisfy
h : Rn → Rp vector function of p equality constraints that the variables must satisfy

The optimization problem

min
x∈Rn

f (x) subject to
{

gi(x) ≤ 0 i = 1 , . . . ,m
hj(x) = 0 j = 1 , . . . , p
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Example of an optimization problem (1/2)

Example and standard form
▶ Starting problem

min (x1 − 2)2 + (x2 − 1)2 subject to
{

x2
1 − x2 ≤ 0

x1 + x2 ≤ 2

▶ Rewritten in standard form

f (x) = (x1 − 2)2 + (x2 − 1)2 , x =

[
x1
x2

]
g(x) =

[
g1 (x)
g2 (x)

]
=

[
x2

1 − x2
x1 + x2 − 2

]
, h(x) =

[]
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Example of an optimization problem (2/2)

Feasible region and objective function level curves
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Example of an optimization problem (2/2)

Feasible region and objective function level curves

­1

0

1

2

3

4

­2 ­1 0 1 2 3

x 2

x1

g1 (x) = 0
g2 (x) = 0
f (x) = 1
f (x) = 4
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Constrained optimization: example 1

min x1 + x2 s. t. 2 − x2
1 − x2

2 = 0

Standard notation, feasibility region and solution
▶ In standard notation: f (x) = x1 + x2 , g(x) = [], h1 (x) = 2 − x2

1 − x2
2

▶ Feasibility region: circle of radius
√

2 , only the border
▶ Solution: x⋆ = [−1 ,−1 ]T

Observation
∇f (x⋆) =

[
1
1

]
, ∇h1 (x⋆) =

[
2
2

]
The constraint normal vector ∇h1 (x⋆) is parallel to the cost function gradient ∇f (x⋆):

∇f (x⋆) + ν⋆1∇h1 (x⋆) = 0 with ν⋆1 = −1
2



4.2 Steady-state Real-Time Optimization (Gabriele Pannocchia)
16/34

Constrained optimization: example 2
min x1 + x2 s. t. 2 − x2

1 − x2
2 ≥ 0

Standard notation, feasibility region and solution
▶ In standard notation: f (x) = x1 + x2 , g1 (x) = x2

1 + x2
2 − 2

▶ Feasibility region: circle of radius
√

2 , including the interior
▶ Solution: x⋆ = [−1 ,−1 ]T

Observation

∇f (x⋆) =

[
1
1

]
, ∇g1 (x⋆) =

[
−2
−2

]
The constraint normal vector ∇g1 (x⋆) is parallel to the cost function gradient ∇f (x⋆):

∇f (x⋆) + λ⋆
1∇g1 (x⋆) = 0 with λ⋆

1 =
1
2
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Constrained optimality conditions (KKT)
Lagrangian function

L(x ,µ, ν) = f (x) +
m∑

i=1
µigi(x) +

p∑
j=1

νjhj(x)

Karush­Kuhn­Tucker optimality conditions (necessary)
▶ If x⋆ is a local solution to the standard problem, there exist µ⋆ ∈ Rm and ν⋆ ∈ Rp:

∇xL(x⋆,µ⋆, ν⋆) = 0
hj(x⋆) = 0 j = 1 , . . . , p
gi(x⋆) ≤ 0 i = 1 , . . . ,m

µ⋆
i ≥ 0 i = 1 , . . . ,m

µ⋆
i gi(x⋆) = 0 i = 1 , . . . ,m

▶ A multiplier µi is zero when the corresponding constraint is inactive, i.e. gi(x⋆) < 0 .
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Elaborating the KKT conditions

Observations
▶ Exploiting the definition of L(x ,µ, ν), we obtain:

∇xL(x ,µ, ν) = ∇f (x) +∇g(x)µ+∇h(x)ν

▶ Note that: ∇h(x) ∈ Rn×m and ∇g(x) ∈ Rn×p

Revised KKT conditions

∇f (x⋆) +∇h(x⋆)µ⋆ +∇g(x⋆)ν⋆ = 0
hj(x⋆) = 0 j = 1 , . . . , p
gi(x⋆) ≤ 0 i = 1 , . . . ,m

µ⋆
i ≥ 0 i = 1 , . . . ,m

µ⋆
i gi(x⋆) = 0 i = 1 , . . . ,m
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RTO problem formulation
Plant and model

?

Plant

Model

▶ Plant cost function to be minimized:

Φp(u) = ϕ(yp(u), u)

▶ Constraints to be fulfilled:

G(yp(u), u) ≤ 0

▶ Model­based optimization problem:

min
u

Φ(u, θ) := ϕ(y(u, θ), u)

s.t. G(y(u, θ), u) ≤ 0
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RTO problem formulation
KKT optimality conditions and matching

▶ Model­based optimization problem KKTs:

∇Φ(u⋆, θ) +∇G(y(u⋆, θ), u⋆)µ⋆ = 0
Gi(y(u⋆, θ), u⋆) ≤ 0 i = 1 , . . . ,m

µ⋆
i ≥ 0 i = 1 , . . . ,m

µ⋆
i Gi(y(u⋆, θ), u⋆) = 0 i = 1 , . . . ,m

▶ Plant optimization problem KKTs:

∇Φp(u⋆) +∇G(yp(u⋆, θ), u⋆)µ⋆ = 0
Gi(yp(u⋆), u⋆) ≤ 0 i = 1 , . . . ,m

µ⋆
i ≥ 0 i = 1 , . . . ,m

µ⋆
i Gi(yp(u⋆), u⋆) = 0 i = 1 , . . . ,m
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RTO iterative scheme

KKT matching
▶ For the plant and model KKT conditions to match, i.e. to achieve the true optimum:

yp(u⋆)− y(u⋆, θ) = 0 output value matching
∇yp(u⋆)−∇y(u⋆, θ) = 0 output gradient matching

PlantModel-based 
optimization

Model
Correction

RTO
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Different RTO approaches

Two­step approach

PlantModel-based 
optimization

Model parameter 
adaptation

RTO
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Different RTO approaches

ISOPE (Integrated System Optimization and Parameter Estimation)

PlantModel-based 
optimization

Model parameter 
and cost modifier 

adaptation

RTO
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Different RTO approaches

Modifier Adaptation (MA)

PlantModel-based 
optimization

Model modifier 
adaptation

RTO
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Different RTO approaches
Some details about the correction terms

Model parameter adaptation
▶ The model parameters θ are updated via data­reconciliation tools

Modifier adaptation
▶ 0­order modifier:

ϵk+1 = yp(uk)− y(uk , θ)

▶ 1­st modifier (MA):

Λk+1 = ∇yp(uk)−∇y(uk , θ)

▶ 1­st modifier (ISOPE):

Λk+1 = ∇yϕ(y , u) [∇yp(uk)−∇y(uk , θ)]
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Hierarchical scheme of optimization, monitoring and control

Actuators and Sensors

Distributed Control System
(PID Controls)

Advanced process control (MPCs)

Real Time Optimization

Planning, Scheduling &
Monitoring

(< 10 ms)

(10-100 ms)

(30-120 s, tracking  economics)

(1-6 h,  plant economics)

(1-7 days, what/when to make)
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RTO first­principles models
Steady­state process simulators
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RTO and MPC
Bi­directional connection

RTO PlantMPCs

Filter

Filter

Economic
specs
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RTO and MPC
Examples of RTO and MPC variables

RTO variables MPC variables
Constraints Decisions to MPC Constraints Manipulated setpoints (in DCS)

Reactor conversion Desired targets Temperature Flow
Production rates Min/max limits Level Temperature
MPC constraints Costs/economic priorities Composition Pressure

Column DP Valve positions
Compressor power
Valve positions (PID outputs)
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RTO: Conclusions

▶ Optimal operation typically resides at the intersection of multiple constraints
▶ The basic structure of RTO in cascade to MPC has become the standard approach

for implementing steady­state optimization in plants that operate around nominal
steady states

▶ The advent of open equation modeling and SQP optimization techniques has enabled
rigorous steady state optimizations to be formulated and reliably solved

▶ Ensuring plant optimality needs input­output gradient estimation: Broyden, RLS, etc.
may overcome current limits of FD

I’d like to thank Prof. Dominique Bonvin (EPFL) for his comments on this lecture and for
sharing with me his (infinite) knowledge on RTO
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