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Hierarchical scheme of optimization, monitoring and control

Actuators and Sensors

Distributed Control System
(PID Controls)

Advanced process control (MPCs)

Real Time Optimization

Planning, Scheduling &
Monitoring

(< 10 ms)

(10-100 ms)

(30-120 s, tracking  economics)

(1-6 h,  plant economics)

(1-7 days, what/when to make)
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Revised hierarchical architecture

Actuators and Sensors

Distributed Control System
(PID Controls)

Dynamic Real Time Optimization/
Economic MPCs

Planning, Scheduling &
Monitoring

(< 10 ms)

(10-100 ms)

(1-20 minutes, optimizing  
economics)

(1-7 days, what/when to make)
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Dynamic realtime optimization
Motivations and goals

Motivations
▶ Process plants are operating in an increasingly global and dynamic environment
▶ Account for transient behavior in the determination of economically optimal operating

policies
▶ Inconsistency between the RTO and control layers (offsetfree strategies needed)

Goals
▶ Optimize plant economics dynamically, taking into account changes in plant

parameters (e.g. raw materials, energy price, throughput, etc.)
▶ Meet operating constraints



4.3 Dynamic Real-Time Optimization (Gabriele Pannocchia)
6/39

Twolayer approaches
Openloop DRTO / MPC

Open Loop
DRTO

Linear MPC

Moving Horizon 
Open-Loop Dynamic Optimization

Tracking Linear MPC
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Twolayer approaches
Closedloop DRTO / MPC

Closed Loop
DRTO

Linear MPC

Moving Horizon 
Closed-Loop Dynamic Optimization

Tracking Linear MPC
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Singlelayer approaches

Economic MPC Economic NonLinear MPC
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NMPC formulation for reference tracking
Nominal formulation

Finitehorizon optimal control problem

min
x,u

∥xN − xs∥2
P +

N−1∑
i=0

∥yi − xs∥2
Q + ∥ui − us∥2

R subject to:

x0 = x(k)
xi+1 = f (xi , ui), yi = h(xi) i = 0 , . . . ,N − 1

yi ∈ Y, ui ∈ U, i = 0 , . . . ,N − 1

Equilibrium target
min

xs ,us ,ys
∥ys − r∥2

T subject to:

xs = f (xs , us), ys = h(xs)

ys ∈ Y, us ∈ U
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NMPC formulation for reference tracking
Offsetfree formulation: block diagram

FHOCP

Augmented 
Observer

Plant

Target 
calculation
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NMPC formulation for reference tracking
Offsetfree formulation: augmented model

Nominal and augmented model
▶ Nominal model:

x+ = f (x , u)
y = h(x)

▶ Augmented model:

x+ = F (x , d , u)
d+ = d

y = H(x , d)

with consistent dynamics: F (x , 0 , u) = f (x , u) and H(x , 0) = h(x)
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NMPC formulation for reference tracking
Offsetfree formulation: target calculation

Equilibrium target

min
xs ,us ,ys

∥ys − r∥2
T subject to:

xs = F (xs , d̂k|k , us), ys = H(xs , d̂k|k)

ys ∈ Y, us ∈ U
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NMPC formulation for reference tracking
Offsetfree formulation: FHOCP

Finitehorizon optimal control problem

min
x,u

∥xN − xs∥2
P +

N−1∑
i=0

∥H(xi , d̂k|k)− ys∥2
Q + ∥ui − us∥2

R subject to:

x0 = x̂k|k

xi+1 = F (xi , d̂k|k , ui), i = 0 , . . . ,N − 1
H(xi , d̂k|k) ∈ Y, ui ∈ U, i = 0 , . . . ,N − 1



4.3 Dynamic Real-Time Optimization (Gabriele Pannocchia)
14/39

Economic MPC
Standard formulation

FHOCP where ℓ(·) is economic cost function

min
x,u

N−1∑
i=0

ℓ(H(xi), ui) subject to:

x0 = x(k)
xi+1 = f (xi , ui), i = 0 , . . . ,N − 1

H(xi) ∈ Y, ui ∈ U, i = 0 , . . . ,N − 1

About the cost function
▶ ℓ(·) measures the process economics during transient, not deviation from setpoints,

which don’t exist
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Economic MPC
Offsetfree formulation

FHOCP

Augmented 
Observer

Plant

Target 
calculation
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Economic MPC
Offsetfree formulation

FHOCP

Augmented 
Observer

Plant

Target 
calculation
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Opensource software tool for NMPC
Presentation

https://github.com/CPCLABUNIPI/MPCcode
Welcome to the MPCcode!
We present a multipurpose, easytouse code for Model Predictive Control (MPC) design,
analysis and simulation. The major goal of this code is to provide the user with a general,
versatile MPC framework that can be adapted to problems in different areas...

▶ Python Amply validated, fast, easytouse,
opensource, customization.

▶ CasADi Opensource symbolic calculation
through algorithmic differentiation, numeric
optimization oriented.

▶ IPOPT Standard in the class of opensource
nonlinear programming (NLP) solvers.
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Industrial case study
Problem definition: project scheme

Enhancing the factory management of Altair Chimica SPA with:
automation, digitalization, machine learning and process computerization

Project major components
▶ Management System: handle

the orders from clients and
make the sale plan by hand

▶ Distributed Control System
(DCS)

Goals
Develop a RTO system to model and optimally schedule the production plan
▶ exchange input and output data with the DCS at fixed times
▶ hierarchically superior to controllers: works as a fully automatic operator
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Industrial case study
Problem definition: Nomenclature

np products. Each jth has
▶ Production rate: xj = [x0

j , ..., x i
j , ..., x

nh−1
j ]

▶ Sales plan: Sj = [S0
j , ...,S i

j , ...,S
nh−1
j ]

nh are the hours in the optimization horizon, i.e. nh = 24 × 7 = 168 h in a week.
Sales plan features
▶ From the selling department and used within the problem as input parameters
▶ Defining ts,d , with d = 1 , ..., 7 as the selling time of each day

▶ the only nonzero components of Sj are the ones for i = ts,d
▶ sale is satisfied iff the stock of product j contains enough material at time ts,d

Batch vs Continuous products
▶ nb < np products are produced with batch reactors
▶ The corresponding xj is zero throughout most of the horizon
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Industrial case study
Problem definition: Nomenclature

Storable vs NonStorable products

Storable
▶ Stock of product j is function of xj and

Sj

▶ Stock is bounded by physical
constraints

▶ Mass balance from the initial stock σ0
j :

σi+1
j = σi

j+x i
j −S i

j −aj(x)i ∀ i = 0 , ..., nh

NonStorable
▶ Some products cannot be stocked due

to specific safety or logistic reasons
▶ Cannot be stocked or sold → must be

consumed within the facility
▶ Mass balance collapse to:

0 = x i
j − aj(x)i ∀ i = 0 , ..., nh

Selfconsumption aj(x)
Some of the products are consumed within the industrial site to obtain other chemicals
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Example
▶ 7day plan
▶ 3 batch products and 3 reactors
▶ All initial stocks empty

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

!#
!$
!%

"&,$
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ Consider Sts,2

P1
> WP

▶ 1 batch reaction for P1 in R1

▶ Reactor time tR1 < ts,2 → 3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(!!#
!$
!%

"&,$")!
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ Sts,2

P1
> WP → 2◦ batch of P1 has to be

scheduled
▶ 2◦ batch reaction for P1 in R1

▶ Tentative reactor time tR1 ,h > ts,2 → 7

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(!!#
!$
!%

"&,$ ")!,*
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ R2 is enrolled
▶ 1 batch reaction for P1 in R2

▶ Reactor time tR2 < ts,2 → 3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(!
"(!

!#
!$
!%

"&,$ ")!,*")!

")"
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ The first sale is satisfied correctly
▶ tR1 = tP1 , tR2 = tP1 , tR3 = 0

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(!
"(!

!#
!$
!%

"&,$")!

")"
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ Sts,4

P2
> WP and Sts,4

P1
≤ WP

▶ 2 batch for P2 and 1 batch for P1
required

▶ P2 has the priority

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(!
"(!

!#
!$
!%

")!

")"

"&,+
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ 2 batch reaction for P2 in R1

▶ Reactor time tR1 + 2 ∗ tP2 < ts,4 → 3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(" "("
"(!

!#
!$
!%

")!

")"

"&,+
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ 1 batch reaction for P1 in R1

▶ Tentative reactor time tR1 ,h > ts,4 → 7

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(" "(" "(!
"(!

!#
!$
!%

")!

")"

"&,+ ")!,*



4.3 Dynamic Real-Time Optimization (Gabriele Pannocchia)
28/39

Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ 1 batch reaction for P1 in R1

▶ Tentative reactor time tR1 ,h > ts,4 → 7
▶ R2 is enrolled
▶ Tentative reactor time tR2 ,h < ts,4 → 3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(" "(" "(!
"(! "(!

!#
!$
!%

")!

")"

"&,+ ")!,*
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ The second sale is satisfied correctly
▶ tR1 = tP1 + 2 ∗ tP2 , tR2 = 2 ∗ tP1 , tR3 = 0

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(" "("
"(! "(!

!#
!$
!%

")!

")"
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ Sts,5

P3
< WP

▶ 1 batch for P3 required

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(" "("
"(! "(!

!#
!$
!%

")!

")"

"&,,



4.3 Dynamic Real-Time Optimization (Gabriele Pannocchia)
31/39

Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ tR1 ,h > ts,5 → 7
▶ tR2 ,h > ts,5 → 7
▶ R3 is enrolled → tR3 ,h < ts,5 → 3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(" "(" "(#
"(! "(! "(#

"(#

!#
!$
!%

")!

")"

"&,, ")!,*
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Industrial case study
Batch Scheduling: the methodology through an example

The sales plan

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 Sts,2
P1

0 Sts,4
P1

0 0 0
P2 0 0 0 Sts,4

P2
0 0 0

P3 0 0 0 0 Sts,5
P3

0 0

Comments
▶ All the sals are correctly satisfied
▶ tR1 = tP1 + 2 ∗ tP2 , tR2 = 2 ∗ tP1 ,

tR3 = tP3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

"(! "(" "("
"(! "(!

"(#

!#
!$
!%

")!

")"")#
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Industrial case study
ALTAIR plant for chlorine derivatives

Details
16 products (np = 16 )
▶ 12 continuoustime
▶ 1 nonstorable and

non salable (Cl2 )
▶ 3 batch (nb = 3 )

Optimization horizon
nh = 168 h
Decision variables
nx = (np − nb)nh = 2184
Constraints
▶ 12 on stocks
▶ 5 safety and others

total along nh,> 3000
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Industrial case study
Dynamic optimization problem details

Soft and Hard constraints
▶ Soft:

▶ 2 on HCl: HCl(b) can be sold after dilution to cover sales for missing HCl(a), HCl(c) can be
sold after dilution to cover sales for both HCl(a) and HCl(b)

▶ 1 on FeCl3: FeCl(b)
3 can be sold directly as FeCl(a)

3 with a little profit loss
▶ Hard: stock bounds, electrical bounds for production of NaOH(a) and KOH by

electrolysis

Objective Function
f (x) = σnh

HCl(a) + σnh
HCl(b) + σnh

HCl(c)

Initial condition
▶ f (x0 ) = 18 tons
▶ Two types of hard constraints are

violated

Optimal solution
▶ f (xopt) = 39 .1 tons
▶ Two types of soft constraints are

violated
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Industrial case study
Illustrative Results

σHCl(a)

σHCl(b)

σHCl(c)

σHCl

Stocks of HCl(a), HCl(b) and
HCl(c)
Main comments:
▶ Stocks “zigzag” behavior is

given by the sales concentrated
on ts,d

▶ Stock of HCl(a) is lower than the
minimum bound ( soft constraint)

↓ ↓
HCl(b) or HCl(c) have to be diluted
and sold as HCl(a)

▶ Sum of stocks of the three HCl
is ok (hard constraint)
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Industrial case study
Illustrative Results

σFeCl(a)
3

σFeCl(b)
3

σFeCl3

Stocks of FeCl(a)3 and FeCl(b)3
Main comments:
▶ Stocks “zigzag” behavior is

given by the sales concentrated
on ts,d

▶ Stock of FeCl(a)3 is lower than
the minimum bound ( soft
constraint)

↓ ↓
FeCl(b)3 has to be sold as FeCl(a)3
with a profit loss

▶ Sum of stocks of the two FeCl3
is ok (hard constraint)
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Industrial case study

Conclusions
▶ DRTO algorithm to best manage production rates based on the sales plan
▶ Project for an integrated digitalization of an industrial site according to Industry 4.0

paradigms
▶ Products continuous vs batch, storable to be sold vs consumed in realtime within the

industrial site
▶ Preliminary scheduling procedure for batch productions to avoid MIP
▶ A smooth implementation of a LP to obtain always a numerically feasible solution.

The scheduling procedure gives parameters used into the LP
▶ A postanalysis of the optimal solution gives a feedback to the operator
▶ A key instrument in a full computerization and digitalization project of the company
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DRTO: Conclusions

▶ Direct optimizing control is a promising approach to optimization of dynamic economic
performance of chemical processes

▶ Modeling is about making educated approximations to arrive at a model of acceptable
complexity that is adequate for optimization in the presence of uncertainty

▶ Advances in largescale nonlinear programming solvers and sensitivity lead to
formulation of nonlinear modelbased dynamic optimization that are feasibly executed
within allowed time

▶ DRTO/EMPC scheme are likely to replace or at least complement the more
conventional hiearchical RTO/LMPC architecture

I’d like to thank Dr. Marco Vaccari (UniPI) for the material on the industrial case study
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