

Introduction

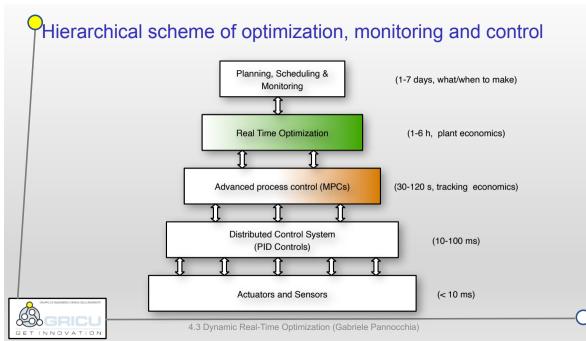
Overview of DRTO approaches

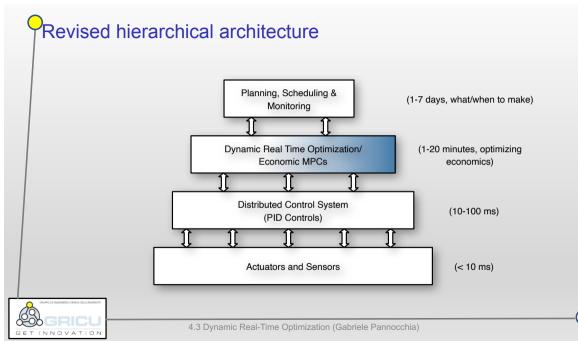
Economic NonLinear Model Predictive Control

Software tool for NMPC

An industrial example

Conclusions





Oynamic real-time optimization

Motivations and goals

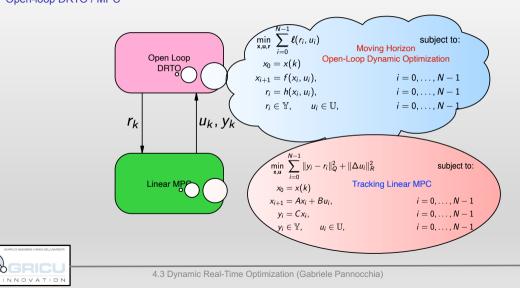
Motivations

- Process plants are operating in an increasingly global and dynamic environment
- Account for transient behavior in the determination of economically optimal operating policies
- Inconsistency between the RTO and control layers (offset-free strategies needed)

Goals

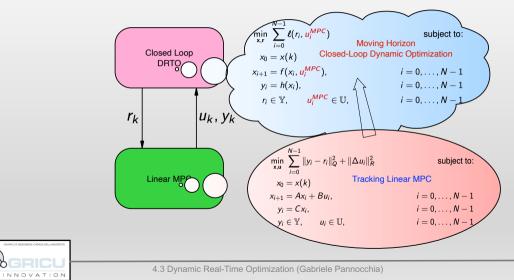
- Optimize plant economics dynamically, taking into account changes in plant parameters (e.g. raw materials, energy price, throughput, etc.)
- Meet operating constraints

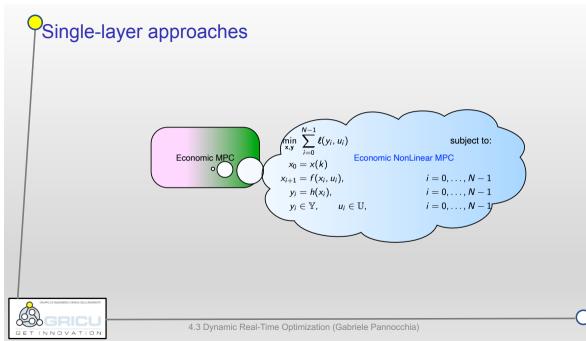
Two-layer approaches



Two-layer approaches

Closed-loop DRTO / MPC





NMPC formulation for reference tracking

Nominal formulation

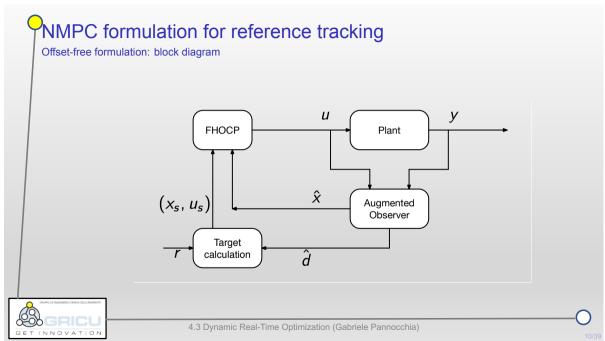
Finite-horizon optimal control problem

$$\begin{split} \min_{\mathbf{x},\mathbf{u}} \|x_N - x_s\|_P^2 + \sum_{i=0}^{N-1} \|y_i - x_s\|_Q^2 + \|u_i - u_s\|_R^2 \qquad & \text{subject to:} \\ x_0 &= x(k) \\ x_{i+1} &= f(x_i, u_i), \quad y_i = h(x_i) \qquad & i = 0, \dots, N-1 \\ y_i \in \mathbb{Y}, \quad u_i \in \mathbb{U}, \qquad & i = 0, \dots, N-1 \end{split}$$

Equilibrium target

$$\min_{\substack{x_s, u_s, y_s}} \|y_s - r\|_T^2 x_s = f(x_s, u_s), \quad y_s = h(x_s) y_s \in \mathbb{Y}, \quad u_s \in \mathbb{U}$$

subject to:



NMPC formulation for reference tracking

Offset-free formulation: augmented model

Nominal and augmented model

Nominal model:

$$x^+ = f(x, u)$$
$$y = h(x)$$

Augmented model:

$$x^{+} = F(x, d, u)$$
$$d^{+} = d$$
$$y = H(x, d)$$

with consistent dynamics: F(x, 0, u) = f(x, u) and H(x, 0) = h(x)

NMPC formulation for reference tracking Offset-free formulation: target calculation Equilibrium target $\min_{x_s, u_s, y_s} \|y_s - r\|_T^2$ $x_s = F(x_s, \hat{d}_{k|k}, u_s), \quad y_s = H(x_s, \hat{d}_{k|k})$ $y_s \in \mathbb{Y}, \quad u_s \in \mathbb{U}$

4.3 Dynamic Real-Time Optimization (Gabriele Pannocchia)

subject to:

NMPC formulation for reference tracking

Offset-free formulation: FHOCP

Н

Finite-horizon optimal control problem

$$\begin{split} \min_{\mathbf{x},\mathbf{u}} \|x_N - x_s\|_P^2 + \sum_{i=0}^{N-1} \|H(x_i, \hat{d}_{k|k}) - y_s\|_Q^2 + \|u_i - u_s\|_R^2 \qquad \text{subject to:} \\ x_0 &= \hat{x}_{k|k} \\ x_{i+1} &= F(x_i, \hat{d}_{k|k}, u_i), \qquad \qquad i = 0, \dots, N-1 \\ (x_i, \hat{d}_{k|k}) \in \mathbb{Y}, \qquad u_i \in \mathbb{U}, \qquad \qquad i = 0, \dots, N-1 \end{split}$$

PEconomic MPC

Standard formulation

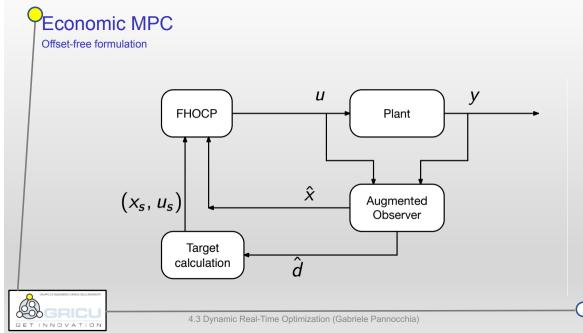
NOVATIO

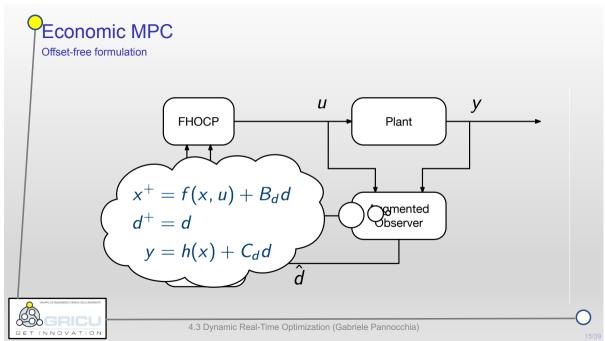
FHOCP where $\ell(\cdot)$ is economic cost function

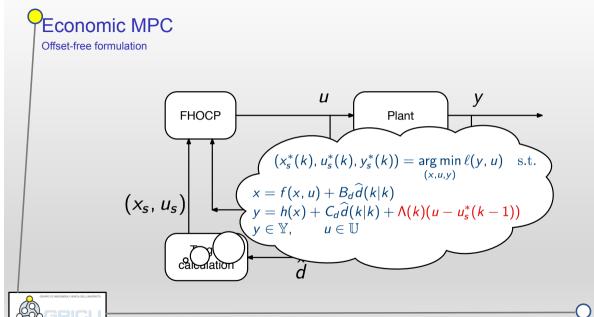
$$\min_{\mathbf{x},\mathbf{u}} \sum_{i=0}^{N-1} \ell(H(x_i), u_i) \qquad \text{subject to:} \\
x_0 = x(k) \\
x_{i+1} = f(x_i, u_i), \qquad i = 0, \dots, N-1 \\
H(x_i) \in \mathbb{Y}, \qquad u_i \in \mathbb{U}, \qquad i = 0, \dots, N-1$$

About the cost function

► l(·) measures the process economics during transient, not deviation from setpoints, which don't exist

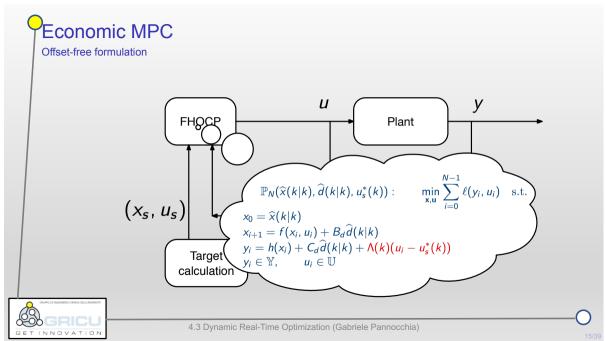






4.3 Dynamic Real-Time Optimization (Gabriele Pannocchia)

NOVATION



Open-source software tool for NMPC

Presentation

https://github.com/CPCLAB-UNIPI/MPC-code

Welcome to the MPC-code!

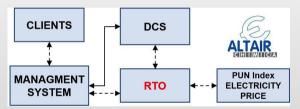
We present a multipurpose, easy-to-use code for Model Predictive Control (MPC) design, analysis and simulation. The major goal of this code is to provide the user with a general, versatile MPC framework that can be adapted to problems in different areas...

- Python Amply validated, fast, easy-to-use, open-source, customization.
- CasADi Open-source symbolic calculation through algorithmic differentiation, numeric optimization oriented.
- IPOPT Standard in the class of open-source nonlinear programming (NLP) solvers.

Problem definition: project scheme

Enhancing the factory management of Altair Chimica SPA with:

automation, digitalization, machine learning and process computerization



Project major components

- Management System: handle the orders from clients and make the sale plan by hand
- Distributed Control System (DCS)

Goals

Develop a RTO system to model and optimally schedule the production plan

- exchange input and output data with the DCS at fixed times
- hierarchically superior to controllers: works as a fully automatic operator

Problem definition: Nomenclature

n_p products. Each *j*-th has

- Production rate: $x_j = [x_j^0, ..., x_j^i, ..., x_j^{n_h-1}]$
- Sales plan: $S_j = [S_j^0, ..., S_j^i, ..., S_j^{n_h-1}]$

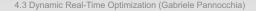
 n_h are the hours in the **optimization horizon**, i.e. $n_h = 24 \times 7 = 168$ h in a week. Sales plan features

- ► From the selling department and used within the problem as input parameters
- Defining $t_{s,d}$, with d = 1, ..., 7 as the selling time of each day
 - the only non-zero components of S_j are the ones for $i = t_{s,d}$
 - sale is satisfied iff the stock of product j contains enough material at time t_{s,d}

Batch vs Continuous products

• $n_b < n_p$ products are produced with batch reactors

The corresponding x_j is zero throughout most of the horizon



Problem definition: Nomenclature

Storable vs Non-Storable products

Storable

- Stock of product *j* is function of x_j and S_j
- Stock is bounded by physical constraints
- Mass balance from the initial stock σ_j^0 :

$$\sigma_j^{i+1} = \sigma_j^i + x_j^i - S_j^i - a_j(x)^i \quad \forall i = 0, ..., n_h$$

Self-consumption $a_j(x)$

Some of the products are consumed within the industrial site to obtain other chemicals

Non-Storable

- Some products cannot be stocked due to specific safety or logistic reasons
- Cannot be stocked or sold → must be consumed within the facility
- Mass balance collapse to:

$$0 = x_j^i - a_j(x)^i \quad \forall \ i = 0, ..., n_h$$

Batch Scheduling: the methodology through an example

The sales plan

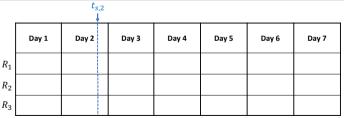
NNOVATION

	$t_{s,1}$	$t_{s,2}$	$t_{s,3}$	$t_{s,4}$	$t_{s,5}$	$t_{s,6}$	<i>t</i> _{<i>s</i>,7}
P_1	0	$S_{P_1}^{t_{s,2}}$	0	$S_{P_1}^{t_{s,4}}$	0	0	0
P_2	0	0	0	$S_{P_2}^{t_{s,4}}$	0	0	0
P_3	0	0	0	0	$0 \\ 0 \\ S_{P_3}^{t_{s,5}}$	0	0
						$t_{s,2}$	

 R_1 R_2

Example

- 7-day plan
- 3 batch products and 3 reactors
- All initial stocks empty



Batch Scheduling: the methodology through an example

The sales plan

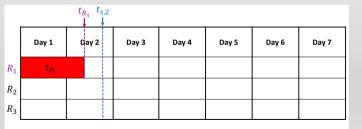
NNOVATION

					$t_{s,5}$		
P_1	0	$S_{P_1}^{t_{s,2}}$	0	$S_{P_1}^{t_{s,4}}$	$0 \\ 0 \\ S_{P_3}^{t_{s,5}}$	0	0
P_2	0	0	0	$S_{P_2}^{t_{s,4}}$	0	0	0
P_3	0	0	0	0	$S_{P_{3}}^{t_{s,5}}$	0	0

Comments

- Consider $S_{P_1}^{t_{s,2}} > W_P$
- 1 batch reaction for P_1 in R_1

• Reactor time $t_{R_1} < t_{s,2} \rightarrow \checkmark$



Batch Scheduling: the methodology through an example

The sales plan

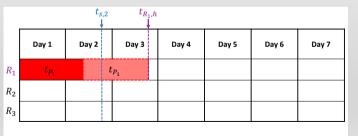
NOVATION

					$t_{s,5}$		
P_1	0	$S_{P_1}^{t_{s,2}}$	0	$S_{P_1}^{t_{s,4}}$	$0 \\ 0 \\ S_{P_3}^{t_{s,5}}$	0	0
P_2	0	0	0	$S_{P_2}^{t_{s,4}}$	0	0	0
P_3	0	0	0	0	$S_{P_{3}}^{t_{s,5}}$	0	0

Comments

- S^{t_{s,2}}_{P₁} > W_P → 2° batch of P₁ has to be scheduled
- 2° batch reaction for P_1 in R_1

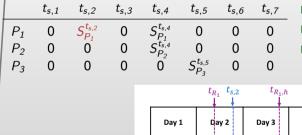
• Tentative reactor time $t_{R_{1,h}} > t_{s,2} \rightarrow X$



Batch Scheduling: the methodology through an example

The sales plan

NNOVATION

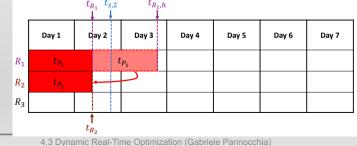


Comments

▶ R₂ is enrolled

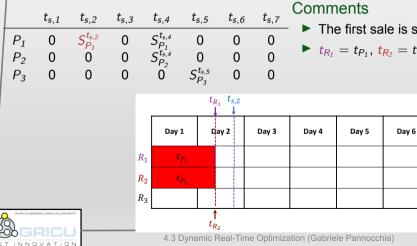
• 1 batch reaction for P_1 in R_2

• Reactor time $t_{R_2} < t_{s,2} \rightarrow \checkmark$



Batch Scheduling: the methodology through an example

The sales plan



The first sale is satisfied correctly

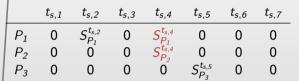
Dav 7

$$t_{R_1} = t_{P_1}, \, t_{R_2} = t_{P_1}, \, t_{R_3} = 0$$

Batch Scheduling: the methodology through an example

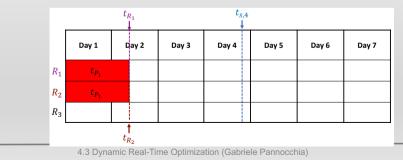
The sales plan

NNOVATION



Comments

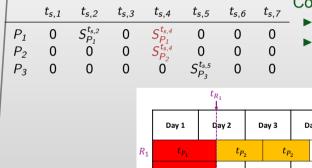
- ► $S_{P_2}^{t_{s,4}} > W_P$ and $S_{P_1}^{t_{s,4}} \le W_P$
- 2 batch for P₂ and 1 batch for P₁ required
- P_2 has the priority



Batch Scheduling: the methodology through an example

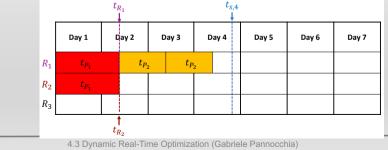
The sales plan

NNOVATION



Comments

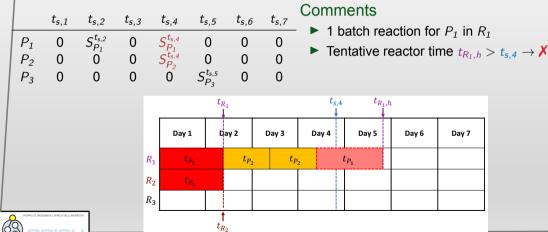
- 2 batch reaction for P_2 in R_1
- Reactor time $t_{R_1} + 2 * t_{P_2} < t_{s,4} \rightarrow \checkmark$



Batch Scheduling: the methodology through an example

The sales plan

NNOVATION



4.3 Dynamic Real-Time Optimization (Gabriele Pannocchia)

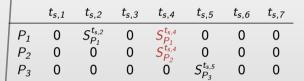
Dav 6

Dav 7

Batch Scheduling: the methodology through an example

The sales plan

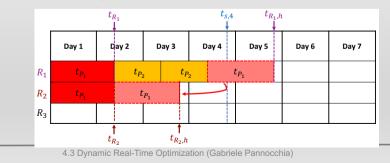
NOVATION



Comments

- 1 batch reaction for P_1 in R_1
- Tentative reactor time $t_{R_{1,h}} > t_{s,4} \rightarrow X$
- R₂ is enrolled

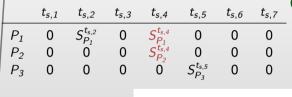
• Tentative reactor time $t_{R_2,h} < t_{s,4} \rightarrow \checkmark$



Batch Scheduling: the methodology through an example

The sales plan

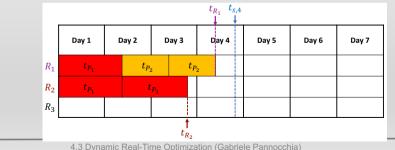
NNOVATION



Comments

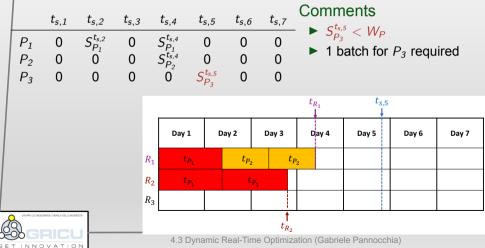
The second sale is satisfied correctly

►
$$t_{R_1} = t_{P_1} + 2 * t_{P_2}, t_{R_2} = 2 * t_{P_1}, t_{R_3} = 0$$



Batch Scheduling: the methodology through an example

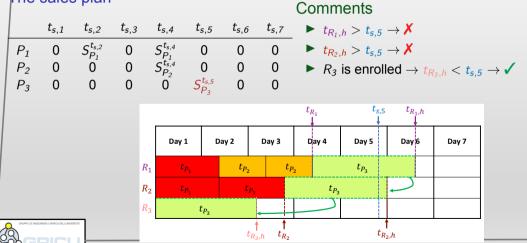
The sales plan



Batch Scheduling: the methodology through an example

The sales plan

NNOVATION



Batch Scheduling: the methodology through an example

The sales plan

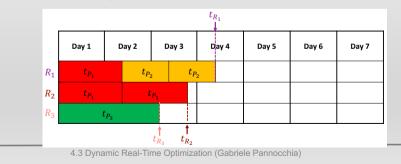
NNOVATION

		$t_{s,2}$					
P_1	0	$S_{P_1}^{t_{s,2}} \ 0 \ 0$	0	$S_{P_1}^{t_{s,4}}$	0	0	0
P_2	0	0	0	$S_{P_2}^{t_{s,4}}$	0	0	0
P_3	0	0	0	0	$S_{P_{3}}^{t_{s,5}}$	0	0

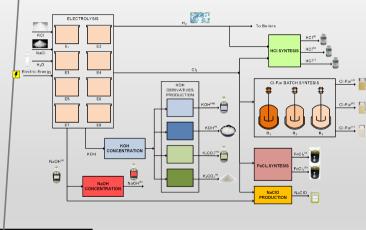
Comments

► All the sals are correctly satisfied

►
$$t_{R_1} = t_{P_1} + 2 * t_{P_2}, t_{R_2} = 2 * t_{P_1}, t_{R_3} = t_{P_3}$$



ALTAIR plant for chlorine derivatives



Details

16 products $(n_p = 16)$

- 12 continuous-time
- 1 non-storable and non salable (Cl₂)
- > 3 batch $(n_b = 3)$

Optimization horizon $n_h = 168 \text{ h}$ Decision variables $n_x = (n_p - n_b)n_h = 2184$ Constraints

- 12 on stocks
- 5 safety and others

total along n_h , > 3000

Dynamic optimization problem details Soft and Hard constraints

- ► Soft:
 - 2 on HCI: HCI^(b) can be sold after dilution to cover sales for missing HCI^(a), HCI^(c) can be sold after dilution to cover sales for both HCI^(a) and HCI^(b)
 - ▶ 1 on FeCl₃: FeCl₃^(b) can be sold directly as FeCl₃^(a) with a little profit loss
- Hard: stock bounds, electrical bounds for production of NaOH^(a) and KOH by electrolysis

Objective Function

$$f(x) = \sigma_{HCI^{(a)}}^{n_h} + \sigma_{HCI^{(b)}}^{n_h} + \sigma_{HCI^{(c)}}^{n_h}$$

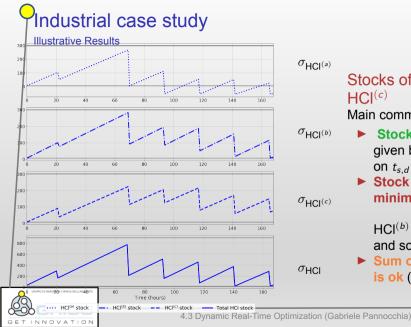
Initial condition

• $f(x_0) = 18$ tons

Two types of *hard* constraints are violated

Optimal solution

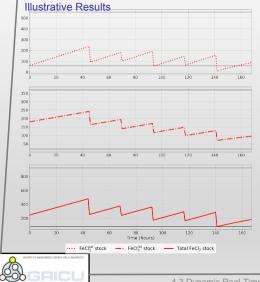
- $f(x_{opt}) = 39.1$ tons
- Two types of *soft* constraints are violated



Stocks of HCI^(a), HCI^(b) and $HCI^{(c)}$

Main comments:

- Stocks "zigzag" behavior is given by the sales concentrated on $t_{s,d}$
 - Stock of HCI^(a) is lower than the minimum bound (soft constraint)
 - $HCI^{(b)}$ or $HCI^{(c)}$ have to be diluted and sold as HCI^(a)
 - Sum of stocks of the three HCI is ok (hard constraint)



$\sigma_{\text{FeCl}_3^{(a)}}$ Stocks of FeCl $_3^{(a)}$ and FeCl $_3^{(b)}$ Main comments:

- Stocks "zigzag" behavior is given by the sales concentrated on t_{s,d}
- ^σ_{FeCl₃}
 ^β Stock of FeCl₃^(a) is lower than the minimum bound (soft constraint)
 - FeCl₃^(b) has to be sold as FeCl₃^(a) with a profit loss
 - Sum of stocks of the two FeCl₃ is ok (hard constraint)

4.3 Dynamic Real-Time Optimization (Gabriele Pannocchia)

 σ_{FeCl_3}

Conclusions

- DRTO algorithm to best manage production rates based on the sales plan
- Project for an integrated digitalization of an industrial site according to Industry 4.0 paradigms
- Products continuous vs batch, storable to be sold vs consumed in real-time within the industrial site
- Preliminary scheduling procedure for batch productions to avoid MIP
- A smooth implementation of a LP to obtain always a numerically feasible solution. The scheduling procedure gives parameters used into the LP
- A post-analysis of the optimal solution gives a feedback to the operator
- A key instrument in a full computerization and digitalization project of the company

PDRTO: Conclusions

- Direct optimizing control is a promising approach to optimization of dynamic economic performance of chemical processes
- Modeling is about making educated approximations to arrive at a model of acceptable complexity that is adequate for optimization in the presence of uncertainty
- Advances in large-scale nonlinear programming solvers and sensitivity lead to formulation of nonlinear model-based dynamic optimization that are feasibly executed within allowed time
- DRTO/EMPC scheme are likely to replace or at least complement the more conventional hiearchical RTO/LMPC architecture

I'd like to thank Dr. Marco Vaccari (UniPI) for the material on the industrial case study

PReferences I

- LT Biegler, X Yang, and GAG Fischer. Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization. *Journal of Process Control*, 30:104–116, 2015.
- Dominique Bonvin and Bala Srinivasan. On the role of the necessary conditions of optimality in structuring dynamic real-time optimization schemes. *Computers & chemical engineering*, 51:172–180, 2013.
- Timm Faulwasser and Gabriele Pannocchia. Toward a unifying framework blending real-time optimization and economic model predictive control. *Industrial & Engineering Chemistry Research*, 58(30):13583–13598, 2019.
- Daniel Haßkerl, Clemens Lindscheid, Sankaranarayanan Subramanian, Patrick Diewald, Alexandru Tatulea-Codrean, and Sebastian Engell. Economics optimizing control of a multi-product reactive distillation process under model uncertainty. *Computers & Chemical Engineering*, 118:25–48, 2018.
- Mohammad Zamry Jamaludin and Christopher LE Swartz. Dynamic real-time optimization with closed-loop prediction. AIChE Journal, 63(9):3896–3911, 2017.
- Thomas E Marlin, Andrew N Hrymak, et al. Real-time operations optimization of continuous processes. In *AIChE Symposium Series*, volume 93, pages 156–164. New York, NY: American Institute of Chemical Engineers, 1971-c2002., 1997.
- Gabriele Pannocchia. An economic MPC formulation with offset-free asymptotic performance. *IFAC-PapersOnLine*, 51(18): 393–398, 2018.
- Marco Vaccari, Riccardo Bacci Di Capaci, Elisabetta Brunazzi, Leonardo Tognotti, Pierno Paolo, Vagheggi Roberto, and Gabriele Pannocchia. Implementation of an industry 4.0 system to optimally manage chemical plant operation. In *IFAC World Congress*, 2020.

